
Numerical solution of non-isothermal flow in heavy oil reservoirs using par-
allel computing

Ralph Alves Bini da Silva Almeida1, Grazione de Souza1, Helio Pedro Amaral Souto1

1Rio de Janeiro State University, Polytechnic Institute
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Abstract. In this work, we have used the OpenACC to parallelize a reservoir simulator aiming to simulate two-
dimensional non-isothermal flows in a heavy oil reservoir. We have considered the production scenario with
a vertical well and two static heaters. We have also applied the Control Volume Finite Difference Method to
discretize flow and energy governing equations. We have chosen the Conjugate Gradient Method to solve the
systems of algebraic equations to obtain pressure and temperature fields along with an operator splitting method. In
the study of computational performance, we have employed different computational meshes and achieved speedup
values greater than eight.
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1 Introduction

We can apply miscible, chemical, miscible displacement, biological or thermal methods in enhanced oil
recovery. Specifically, when it comes to thermal techniques, we can cite approaches such as combustion in situ
[1], heated steam injection [2], or reservoir heating through static equipment [3]. In the latter, considered in this
work, we introduce an apparatus into the porous medium, and a heating process occurs without the need to inject
fluids into the reservoir. Heating a reservoir favors flow by reducing the oil viscosity, as in the case of heavy oil
reservoirs (viscosities ranging from 20 to 400 × 10−3 Pa.s) [4].

As a possible application, we can mention the case of single-phase flow in a heavy oil reservoir heated through
static heating wells (Figure 1). As is well known, in this problem, the flow and the heat transfer are governed by
nonlinear partial differential equations. Analytical solutions, when available, can only be determined for particular
simplified cases. Therefore, we resort to numerical methods to obtain approximate solutions in the context of oil
reservoir simulation.

Figure 1. Producing well (in blue) and two static heating wells (in red)

We frequently use numerical simulations of flow in reservoirs to evaluate the operational scenarios, helping
to choose the best production strategy. In this sense, the oil & gas industry has used high-performance computing
tools to obtain results with a lower computational cost. Parallel computing consists, in general, of the use of
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hardware and specific programming techniques that can enable the reduction of the time required for the execution
of computer programs when compared to the respective execution time using serial codes [5]. Parallelization
techniques include, for example, the use of programming applying Message Passing Interface (MPI), Open Multi-
Processing (OpenMP), Open Accelerators (OpenACC), Compute Unified Device Architecture (CUDA), or hybrids
of these. As the hardware of computers evolves, more complex engineering problems are likely to be solved,
although the computational effort expended in solving these problems tends to be very high. Conversely, we can
achieve improvements in computational performance by parallelizing the entire numerical code, or part of it, thus
implying the use of architectures enabling distributed and parallel execution [6].

Within the context already presented, this work has as its goal the implementation of a computationally
efficient simulator. For this purpose, we use the OpenACC to parallelize part of the numerical code. Specifically,
we have decided to modify the numerical code of the method chosen to solve the systems of linearized algebraic
equations and the calculation of transmissibilities. These systems arise from the discretization process, and we
use them to obtain the pressure and temperature fields during heavy oil recovery in a reservoir heated by static
elements.

2 Physical-mathematical Modeling

Introducing the Formation Volume Factor (B = ρosc/ρo) and using the Darcy law, we can write the equation
that expresses the mass balance for the porous media oil flow as [7, 8]
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where ρo is the oil density, φ is the porosity, µo is the oil viscosity, k is the absolute permeability tensor (here
considered diagonal), p is the pressure, Vb is the bulk volume, qsc is a volumetric source term, sc indicates the
standard conditions for pressure and temperature (psc and Tsc), and the superscript “0” indicates the reference
conditions. We have neglected the gravitational effect in obtaining eq. (1).

Here, we also consider that
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where B0 and φ0 are, respectively, the formation volume factor and the porosity in the reference conditions of
pressure, p0, and temperature, T 0. The terms co and coT represent the compressibility and the expansion thermal
coefficient of the oil, while cφ and cφT are the compressibility and the expansion thermal coefficient of the rock,
respectively. Moreover, for the oil viscosity, we use the correlation for heavy oil:

µ = a exp

(
b

T − Tref,µ

)
, (3)

where a and b are oil dependent and Tref,µ is a reference temperature [4].
As the initial condition, we set p(x, y, t = 0) = pini(x, y) = pinic, where pini is the initial pressure

before production and heating start. Concerning boundary conditions, no-flow conditions are chosen, and thus
(∂p/∂x)x=0,Lx

= (∂p/∂y)y=0,Ly
= 0, where Lx and Ly are the reservoir lengths.

Besides, considering a well-reservoir coupling [9],

qsc = −Jw (p− pwf ) , (4)

where Jw is the productivity index and pwf is the wellbore pressure.
On the other hand, from the energy balance, without assuming the local thermal equilibrium hypothesis

(Tr 6= To) [10],
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∂

∂t
[(ρcp)T ]−∇ · (κ∇T ) =

qH
Vb

+
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−∇ · (ρohovo), (5)

where (ρcp) = φρocpo + (1−φ)ρrcpr represents the porous media thermal capacity, T is the average temperature
of the reservoir, such as (ρcp)T = φρocpoTo + (1 − φ)ρrcprTr, Tr and To are rock and oil temperatures, ho is
the oil enthalpy, qH is a heat source term, and κ = [φκo + (1− φ)κr] I is the effective thermal dispersion tensor
(neglecting the tortuosity and hydrodynamic dispersion terms [10]). The source term qH represents the energy
transfer from the heating wells to the reservoir.

We propose the initial condition for temperature T (x, y, t = 0) = Tini(x, y) = Tinic, where Tinic is the
initial temperature before the production and heating begin. As boundary conditions we use (∂T/∂x)x=0,Lx

=
(∂T/∂y)y=0,Ly

= 0.

3 Numerical methodology

We use the Control Volume Finite Difference (CVFD) method and a centered block mesh to obtain the
numerical solution of governing equations [11]. We determine it in the nodes of the computational mesh, located
in the centers of the cells (blocks), where nx and ny are the number of cells in the x- and y-directions, respectively.
The integer index i and j represent the cell numbers in the respectivex- and y-directions, while fractional index
i± 1/2 and j ± 1/2 indicate the cell faces. For the two-dimensional flow, using a fully time-implicit formulation,
it is possible to obtain the final discretized form of eq. (1) as [8]
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where we have used centered difference approximations and Euler approximations backward in time, n+ 1 is the
time level in which the pressures are unknown, and we have also introduced the transmissibility in the x-direction
given by
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, (7)

knowing that we use a harmonic mean to determine the area and permeability in the position i ± 1/2, j from the
known values in i, j and i ± 1, j, while we employ an arithmetic mean for fluid properties [11]. We can use a
similar procedure and obtain an equivalent expression for the transmissibility in the y-direction.

We can use the term (qsc)
n+1
i,j in eq. (4) to include the wellbore pressure. In this case, we have
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where the productivity index is given by
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where rw is the radius of the producing well and we calculate the equivalent radius, req , using the equation [9]

req = 0, 28
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From the energy balance (eq. (5)) we obtain its corresponding discrete form [8]
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Equations (6) and (11) are linearized using Picard’s method [12]. Here, the solution of the linearized algebraic
systems demands the determination of hundreds of thousands of unknowns. Therefore, due to the size of these
systems, it becomes necessary to use a large amount of computational memory and resources with high processing
speed for their numerical resolution. In this work, we utilize the Conjugate Gradient method [13] for this purpose.

4 Parallel processing using OpenACC

In the field of parallel computing, one of the most popular resources available is the OpenACC. When ap-
plying it in shared memory architectures, it is necessary to use three components: the compilation directives, the
execution library, and the environment variables [14]. In general, during the execution of the numerical code a
directive will initiate the parallelization of a part of the computational code, distributing a sequence of tasks among
several threads. Then the threads will perform the assigned tasks separately. OpenACC also allows for paralleliza-
tion using graphics cards employing uncomplicated programming compared to CUDA. This last feature represents
the main reason for adopting OpenACC, that is, the possibility of having the best performance of GPUs to run
numerical codes due to a large number of cores available and dedicated memory.

Parallelization using OpenACC demands the correct installation of the compilers and the graphics card, be-
sides a thorough analysis of the computational code to define which parts or functions of the code request more
computational effort. Also, we must propose the directives, clauses, and flags for a successful compilation of the
numerical code [15]. Here, we utilize the version of the community edition for Linux (based on Debian) of PGI
Compiler 20.4 (NVIDIA HPC SDK Version 20.11). For readers who have already used the OpenMP, we should
point out that the commands and directives are similar. Therefore, the user will experience a sense of familiarity.

After defining the code region to be parallelized, it is necessary to select among the different options, the
directives, and clauses that are the most appropriate. In this context, we added the following directive: #pragma
acc parallel loop to parallelize a loop. A fundamental directive is data. We employ it when we want to copy, for
example, vectors and matrices that we stored in the memory accessed by the CPU to the memory of the GPU or
vice versa. Regarding the data directive, we utilize respectively copy and create clauses to transfer data to the GPU
and CPU memories.

To parallelize loops of type for it is possible to replace the directive parallel loop with kernels. This last
directive allows the compiler to choose the safest parallelization strategies. Besides, it can verify whether paral-
lelization is feasible. Therefore, it deprives the programmer of his prerogatives of choice. We have used clauses
such as private and reduction associated with the parallel loop directive. The first specifies that each loop iteration
has its copy of the variables listed. The reduction clause works similarly to the private clause, and the compiler
generate a private copy of the variables. However, there is a reduction at the end of the parallel region execution
of all private copies into a single final result. Possible reduction operations are addition, multiplication, maximum
and minimum, for example, reduction(+:sum).

Recent advances make it possible, depending on the OpenACC version, to use the GNU Compiler to compile
parts of the computer codes. Nevertheless, the most widespread and consolidated use of OpenACC recommends
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that we perform the compilation with the PGI Compiler [16]. For that, we must use compilation-specific flags so
that the code executes tasks in parallel on CPUs or GPUs.

After modifying the computational code, written in C language, using OpenACC directives and clauses, we
have to type one of the following commands in a Linux terminal: pgcc -acc -ta=nvidia:managed -fast -Minfo=all
-lm code.c -o code parallel or pgcc -acc -ta=multicore -fast -Minfo=all -lm code.c -o code parallel. The “pgcc”
command indicates that the PGI must compile the source code, while the “-acc” flag tells the compiler that it must
consider the OpenACC directives and clauses in the code. Besides, the flag -ta=nvidia:managed indicates that
the graphics card will execute the code. Now, if we utilize -ta:multicore, the CPUs’ threads must perform the
execution, as when we use OpenMP. Also, the allocation in memory using Malloc and Calloc will be replaced
by routines that allocate memory in a unified way, such as, for example, the cudaMallocManaged. Finally, the
flag -fast has the function of optimizing the code, and -Minfo=all displays as much information as possible on the
terminal [15].

5 Numerical Results

In the context of tertiary recovery of hydrocarbons, we have chosen to study the non-isothermal two-dimen-
sional flow of heavy oil. Further, we enhance the production using static heaters. The properties and parameters
used can be seen in Table 1, which represents the default case adopted. So these values are used in all simulations
unless otherwise specified. All the simulation runs have been accomplished in an Intel(R) Xeon(R) Silver 4210
CPU @ 2.20 GHz with 48 threads. Although it is possible to run using graphics cards, we chose only to use the
CPUs threads to perform the simulations in this initial work.

Table 1. Default case

Parameter Value Parameter Value Parameter Value

a 0.2 Pa · s kx = ky 0.02 µm2 x1 2,725 m

b 600 K Lx = Ly 6,400 m x2 3,675 m

B0 1.3 m3/(std m3) Lz 40 m y1 = y2 3,200 m

co 7.25 × 10 −7 kPa−1 nH 2 κo 0.45 W/(m · K)

coT 7.25 × 10 −7 K−1 pinic = p0 6,900 kPa κr 3.5 W/(m·K)

cpo 2,100 J/(kg · k) qH 20 kW ρ 2,500 kg/m3

cpφ 1,200 J/(kg· K) tmax 60 days φ0 0.2

cvo 1,800 J/(kg·k) tol1 = tol2 1.0 × 10 −6 kPa or K ∆tini 0.1 day

cφ 4.35 × 10 −7 kPa−1 Tinic = T 0 330 K ∆tmax 1.0 day

cφT 4.35 × 10 −7 K−1 Tref 500 K

F∆t 1.1 xprod = yprod 3,200 m

We must also provide some additional information concerning the data presented. In Table 1, (x1,y1) and
(x2,y2) are the coordinates indicating where we have placed the two heaters, and we represent the number of heaters
by nH . Furthermore, we have positioned the producing well at the coordinates (xprod,yprod). The maximum
production time is tmax, the initial time increment is ∆tini, and the time step growth rate is F∆t, such that
∆tn+1 = F∆t∆t

n. Its growth occurs until the value reaches ∆tmax, then it remains unchanged until the end of
the simulation.

We have considered that the reservoir is a parallelepiped with dimensions Lx, Ly , and Lz , the last being much
smaller than the others. We present in Table 2 for this domain geometry the number of cells used in the meshes in
x- and y-directions (nx and ny), as well as the total number of corresponding cells.

We should point out that we have performed a mesh refinement study and found that the numerical method
is convergent [8]. Furthermore, we haven’t found any difference between the results obtained with the serial and
parallelized versions of the numerical code [8]. Thus, it was evident that the results obtained in the simulations
performed with parallel versions were in no way compromised. Furthermore, we have attested its superposition
with those obtained from the serial version.
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Table 2. Computational grids

Mesh 1 2 3 4 5 6

nx = ny 47 93 185 369 737 1473

Total of cells 2,209 8,649 34,225 136,161 543,169 2,169,729

Having defined the six computational meshes, we performed all the simulations varying the number of cells
and threads to determine the respective speedup values, and we can see them in Table 3.

Table 3. Speedup and runtimes for the different meshes and number of threads

Threads Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Serial 0.631 2.229 11.986 74.601 494.116 3495.587

5 0.427 0.974 3.837 19.39 96.471 581.953

10 0.541 1.028 3.387 15.645 72.101 439.387

15 0.682 1.153 3.255 14.265 67.148 418.519

20 0.797 1.420 3.412 13.750 63.669 406.573

25 0.779 1.535 3.622 14.375 66.385 481.769

30 0.811 1.594 4.128 14.886 64.801 401.054

35 0.807 1.658 4.155 14.636 62.704 411.262

40 0.893 1.760 4.492 15.043 64.556 418.268

Maximum speedup 1.478 2.289 3.682 5.426 7.880 8.716

From the observation of the results, it is clear that we have achieved our objective. The parallelization of the
Conjugate Gradient method and the transmissibilities calculation allowed us to obtain a gain of around 870% with
Mesh 6. We can also highlight that the reduction in execution time reached values of approximately 550 and 790%
for Meshes 4 and 5. Therefore, considering we have used only CPUs, we understand that these initial results are
satisfactory.

6 Conclusions

First of all, we would like to emphasize that the parallelization did not affect the accuracy of the results. We
have verified this fact by comparing them with those obtained with the non-parallelized version of the numerical
code.

As a consequence of modifications we have carried out in the numerical simulator, it was possible to obtain
gains in computational performance. The speedup has increased when we have refined the computational meshes.
As already advanced, there was a tendency to raise the speedup as the total number of cells in the computational
meshes augmented. As a result, the simulations using Mesh 6 presented the highest speedup. However, we
understand that, depending on the hardware, we cannot affirm that this behavior for even more refined meshes is
maintained if we increase the number of cells and threads.

In future perspectives, we intend to carry out simulations using graphics cards and not only CPUs. By the
way, this is one of the advantages of using OpenACC, which allows running the codes on both CPUs and GPUs.
Of course, depending on the hardware specifications, we expect the gains in computational efficiency to be higher
with the use of graphics cards.
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