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Abstract. The Morley plate element is the simplest triangular finite element for homogeneous, isotropic material,
and represents constant bending curvature/moment exactly, as the flexural counterpart of the membrane, constant
strain/stress finite element. It has six degrees of freedom: three corner-node transversal displacements and three
edge rotations. We propose a slightly modified, improved Morley element based on a frequency-dependent hybrid
finite element formulation to be used in the frame of a generalized modal analysis for stiffness and mass matrices
given as frequency power series. The domain stress solution satisfies the homogeneous elastodynamic equilibrium
equations for moderately thick plates, as we resort to the concept of mean transversal shear distortion proposed
in a previous conference contribution (PANACM/CILAMCE 2021). We show that the formulation for just one
mass matrix corresponds to a plain displacement formulation, as proposed in the literature for the thin-plate, static
problem (although introducing some due corrections). Some numerical tests with one and two mass matrices show
that the model can be seamlessly applied to both moderately-thick and thin plate problems – thus without the
shear-locking inconvenience – and in spite of its shape-function simplicity ensures good, asymptotic convergence
for natural frequencies. As we have a similar generalized modal development for the membrane triangle, this leads
to the simplest – and consistently – conceivable shell element.
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1 Introduction

The dynamic finite element was proposed by Przemieniecki [1] for the frequency-dependent formulation of
truss and beam elements. A large number of investigations on this subjected has succeeded, of which we cite just
a few [2–7], as a comprehensive account is given by Sales [8].

We propose here a frequency-dependent formulation of the Morley plate element [9], which was originally
conceived for the exact static simulation of constant curvature. Our formulation is based on the Hellinger-Reissner
potential [10, 11] and makes use of trial functions obtained by solving the homogeneous elastodynamic plate
equation to approximate internal bending moments of the triangular plate element [12], for instance.

2 The hybrid stress finite element method

The numerical modelling of time-dependent elastic problems is obtained by means of the Hellinger-Reissner
potential, which is based on two fields: a stress field σ∗

ij that homogeneously satisfies the equilibrium equations in
the domain Ω (fundamental solutions), and a displacement field ud

i that satisfies the compatibility on the boundary
Γ. Whenever such fundamental solutions are available the Hellinger-Reissner potential leads to more accurate
results than in the frame of the displacement finite element method.

The time-dependent Hellinger-Reissner variational principle is obtained as a generalization of Hamilton’s
principle, as presented by Dumont and Oliveira [10]:

δΠHR =

∫ t1

t0

∫
Ω

[(
σ∗
ij,j + f̄i − ρü∗

i

)
δud

i −
(
δσ∗

ij,j − ρδü∗
i

) (
u∗
i − ud

i

)]
dΩdt

−
∫ t1

t0

∫
Γσ

(
σ∗
ijηj − t̄i

)
δud

i dΓdt+

∫ t1

t0

∫
Γ

δσ∗
ijηj

(
u∗
i − ud

i

)
dΓdt = 0

(1)
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where u∗
i are displacements associated with the internal stress field σ∗

ij , ud
i are boundary displacements, t̄i are

traction forces, and f̄i are body forces. Its matrix expression for a given time instant is

δdT
(
−HTp∗ − pb + p

)
+ δp∗T (Fp∗ + b − Hd) = 0 (2)

as obtained after representation of σ∗
ij and u∗

i in terms of internal force parameters p∗ and interpolation of ud
i in

terms of boundary nodal displacements d. The kinematic matrix H, flexibility matrix F, and equivalent nodal
displacement b and nodal forces p and pb are given as[

H F b
]
≡

∫
Γ

σ∗
ijmηj

[
ud
in u∗

in ub
i

]
dΓ (3)

[
p pb

]
≡

∫
Γ

[
σb
ijηj t̄i

]
udindΓ (4)

where n and m ≥ n span the sets of boundary nodal displacements d and internal force parameters p∗, respec-
tively. Solving for p∗ in eq. (2), which holds for arbitrary values of δd and δp∗, we obtain the following matrix
equilibrium equation, with the subsequent definition of the element’s stiffness matrix,

Kd = p− pb +HTF−1b ⇒ K = HTF−1H (5)

2.1 Frequency-dependent formulation

Assuming that frequency-dependent, fundamental, solutions of σ∗
ij and u∗

i exist, as given in the next Section,
we expand these solutions as the truncated power series of the frequency ω with n+1 terms [3, 7] (here particularly
considering that there is no damping)

σ∗
ij =

n∑
k=0

ω2kN∗
kijmp∗m , u∗

i =
n∑

k=0

ω2kU∗
kimp∗m (6)

with which power series expressions of the nonsingular matrices F (ω) and H (ω) are also obtained:

F (ω) =

n∑
k=0

ω2kFk , H (ω) =

n∑
k=0

ω2kHk (7)

The terms F0 and H0 above are the flexibility and kinematic matrices of the elastostatic formulation. Further,
we obtain from above the power series expression of the effective stiffness matrix K introduced in eq. (5)

K (ω) = HT (ω)F−1 (ω)H (ω) =

n∑
k=0

ω2kKk ≡ K0 −
nN∑
k=1

ω2knMk (8)

where K0 is the stiffness mass matrix of elastostatic formulation and Mk are generalized mass matrices. The term
M1 is the consistent mass matrix of the conventional finite element formulation for dynamic problems. Special
care must be taken in the evaluation of the inverse of the power series F−1 (ω), since the first matrix term F0 in
eq. (7) is singular [13]. The particularization to a plate’s problem is given in the next Sections.

3 Fundamental solutions for a moderately thick plate

The homogeneous plate governing equation in the frame of the first-order shear deformation theory is

K∇4w∗ − mh2

60

17− 5ν

1− ν
∇2ẅ∗ +mẅ∗ +

m2h

10G
¨̈w∗ = 0 (9)

where K =
Gh3

6(1− ν)
is the plate stiffness, expressed in terms of the Poisson’s ratio ν, the shear modulus G and

the plate thickness h, and m = ρh is the mass density per unit area. (See Sales [8], Dumont and Sales [12] for a
comprehensive development particularly related to moderately thick plates.) We resort to the potential function

Φ∗ = −
(
∇2 +

h2k2

5 (1− ν)

)
w∗ (10)
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Foz do Iguaçu, Brazil, November 21-25, 2022



R. C. Sales and N. A. Dumont

to express the rotations of the plate’s reference plane

β∗
x =

12h2

60(1− ν)− h4k2

(
5(1− ν)

h2
w∗

,y − Φ∗
,y

)
, β∗

y =
−12h2

60(1− ν)− h4k2

(
5(1− ν)

h2
w∗

,x − Φ∗
,x

)
(11)

and write the expression of the bending moments and forces that act on a cross section:
M∗

xx

M∗
yy

M∗
xy

 = K


1 ν 0

ν 1 0

0 0
1− ν

2




β∗
y,x

−β∗
x,y

β∗
y,y − β∗

x,x

 ;

Q∗
x

Q∗
y

 =
5Gh

6

1 0

0 1

 β∗
y + w∗

,x

−β∗
x + w∗

,y

 (12)

The general frequency-dependent, nonsingular fundamental solution w∗ of eq. 9 is expressed in terms of
polar coordinates (r, θ) as

w∗ = (C1nsin(nθ) + C2n cos(nθ))

(
Jn(k1r)

kn1
+

In(k2r)

kn2

)
+

C3msin(mθ) + C4m cos(mθ)

k21 − k22

(
Jm(k1r)

km1
− Im(k2r)

km2

)
, n = 0, . . . , N, m = n− 2 if m ≥ 0 (13)

where k = ω

√
ρh

K
is the frequency number and Jn() and In() are the Bessel and modified Bessel functions of the

first kind and order n. In this equation, n (actually unrelated to the power series numbering of Section 2.1) is the
level of complete solution sets deemed necessary in a finite element implementation, with n = 0 corresponding to
the static solution. Then, we have 1, 2, 3, 4, . . . , 4 complete solution sets for each level of n = 0, 1, 2, 3, . . . , N .

The frequency numbers k1 and k2 are defined as

k21, k
2
2 = k

√
1 + k2

(
h2

120

7 + 5ν

1− ν

)2

± k2h2

120

17− 5ν

1− ν
(14)

These solutions assume that k22 ≥ 0, i.e., the maximum plate thickness in this frequency-dependent framework is

17− 5ν

1− ν

h2k

120
≤ 1 (15)

Moreover, k1 = k2 =
√
k for the case of thin plates.

4 The frequency-dependent Morley plate element

The Morley plate element has a total of six degrees of freedom: three transversal nodal displacements and
three edge rotations, as given in see Fig. 1, where ai = xk − xj , bi = yj − yk and ℓi =

√
a2i + b2i , for i, j and k

permuting cyclically.

Figure 1. Morley plate element and its Cartesian projections.

The flexibility and kinematic matrices F ≡ F(ω) and H ≡ H(ω) of eq. (7) are expressed for the frequency-
dependent hybrid Morley plate element (here called HMPT6) in matrix format as[

H F
]
=

∫
Γ

N∗TTT
[
U U∗

]
dΓ (16)
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N∗ =
[
M∗

mxx M∗
myy M∗

mxy Q∗
mx Q∗

my

]T
,

U∗

U

 =

β∗
my β∗

mx w∗
m

βd
ny βd

ny wd
n

T

(17)

with the terms affected by the subscripts m = 1, . . . , 6 and n = 1, 2, 3 related to the fundamental solutions and
boundary interpolation functions, respectively, according to the general eq. (3) and particularized for the plate eq.
(12). As indicated in eq. (7), N∗ and U∗ are actually to be expressed in terms of power series expansions which
demands a tedious manipulation [8]. We also have in eq. (16) the matrix of unit normal projections

T =


ηx 0 ηy 0 0

0 −ηy −ηx 0 0

0 0 0 ηx ηy

 (18)

Using in eq. (13) N = 3 we obtain a total of six internal solutions, the dimension of vector p∗ in eq. (2),
which is then exactly the dimension of vector d, Morley triangle’s degrees of freedom. This is also a complete set
of solutions, which assures that no spurious modes are likely to rise in the computational course.

By the way, The 3 × 3 flexibility matrix F0, thus for n = 2 and ω → 0 in eq. (13) and eliminating the
rigid-body terms to only correspond to the static case, turns out to be simply

F0 =
16A

K


1− ν 0 0

0 1− ν 0

0 0 1 + ν

 (19)

where A is the triangle’s area. The corresponding 3×6 kinematic matrix H0 also becomes expressible analytically:

H0 = 4 (1− ν)



2A (a2b3 + a3b2)

ℓ23ℓ
2
2

2A (b3b2 − a2a3)

ℓ23ℓ
2
2

0

2A (a1b3 + a3b1)

ℓ23ℓ
2
1

2A (b3b1 − a1a3)

ℓ23ℓ
2
1

0

2A (a1b2 + a2b1)

ℓ21ℓ
2
2

2A (b1b2 − a1a2)

ℓ21ℓ
2
2

0

−a3b3
ℓ3

a23 − b23
2ℓ3

−ℓ3
2

(
1 + ν

1− ν

)
−a1b1

ℓ1

a21 − b21
2ℓ1

−ℓ1
2

(
1 + ν

1− ν

)
−a2b2

ℓ2

a22 − b22
2ℓ2

−ℓ2
2

(
1 + ν

1− ν

)



T

(20)

The expressions of F0 and H0 above lead according to eq. (5) to the same result of the displacement finite element,
as proposed by Morley.

On the other hand, the consistent mass matrix M1 obtained according to eq. (16) turns out to be not positive
definite, in general. The reason for that seems to be the fact that some important contribution is smeared out in
the expression of the expansion terms of H1 related to the edge rotations. (Maybe we are just overseeing some
problem-related geometric interpretation.)

As a way to overcome this, we decided to evaluate H in terms of domain integrations by directly using the
quadratic interpolation functions proposed by Morley [9]. As a matter of fact, Abdalla and Hassan [15] presented a
simple way to express these domain shape functions in terms of eccentricity coefficients ei = (ℓ2k − ℓ2j )/ℓ

2
i , which

are, after fixing some printing errors of the original contribution,

N1

N2

N3

N4

N5

N6


=



1 0 0 1/2 (1 + e2)
1/2 (2 + e2 − e3)

1/2 (1− e3)

0 1 0 1/2 (1− e1)
1/2 (1 + e3)

1/2 (2 + e3 − e1)

0 0 1 1/2 (2 + e1 − e2)
1/2 (1− e2)

1/2 (1 + e1)

0 0 0 0 2A/ℓ3 2A/ℓ3

0 0 0 2A/ℓ1 0 2A/ℓ1

0 0 0 2A/ℓ2 2A/ℓ2 0





ξ21

ξ22

ξ23

ξ1ξ2

ξ2ξ3

ξ3ξ1


(21)

Then, it is a simple matter to transform the boundary integral expression of H in eq. (16) into a domain one as
well to obtain the domain expression of the displacement interpolation functions we have just introduced.
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5 Numerical tests

5.1 Simply supported square plate subjected to static, uniform load

In this example we just test the Morley plate element implemented in the frame of our HMPT6 model.
The hybrid triangular elements HMPT6 is employed to solve the problem of a square plate under uniform load
q = 1. The simply supported square plate has edges L = 10, thickness h = 1 and is subjected to uniform load
q = 1, in consistent units. Elastic modulus and Poisson’s ratio are E = 10.92 and ν = 0.30. Table 1 shows the
results of central displacement and central bending moment of the plate for several mesh discretizations, which are
actually symmetric about four planes. Although we have not taken advantage of these symmetries in the numerical
implementations, it is worth noticing that the very coarse 2 × 2 mesh would actually require the use of only one
triangle element and one degree of freedom. The bending moments at the plate middle are given as the average
of the constant values measured on the adjacent elements. The target solutions are given by Timoshenko and
Woinowsky-Krieger [16].

5.2 Free vibration of a simply supported square plate

In this example, the plate has edges L = 10m and thickness h = 0.01m. The material properties are
E = 200GPa, ν = 0.30 and mass density ρ = 8000Kg/m3. The associated, generalized nonlinear eigenvalue
problem is solved by means of the modified Jacobi-Davidson algorithm developed by Dumont [7].

Table 2 shows the results of the first five normalized natural frequencies ω̄ =

(
ω4ρL4h

K

)1/4

for the element

HPMT6 with one (1MM) and two (2MM) mass matrices. We observe good convergence for both results HMPT6-
1MM and HMPT6-2MM. Nevertheless, the second mass matrix does not seem to improve the computed natural
frequency values, which differs from the results observed for frequency-dependent membrane elements [8]. As
expected, the contribution of a second mass matrix becomes less perceptible as mesh refinement increases. A
second mass matrix leads to smaller frequency values, which is also expected. On the other hand, convergence with
mesh refinement occurs from inferior values, which makes the contribution of a second mass matrix a contradiction,
at least for the present example.

5.3 Free vibration of a rhombic plate

We simulate the free vibration of a rhombic plate with skew angle 600 and ratio L/h = 5. The plate is
clamped on one border and free on the other borders (CFFF). The material properties are E = 200GPa, ν = 0.30
and ρ = 8000Kg/m3.

Table 3 shows the first five normalized natural frequencies, evaluated according to our computer implemen-
tation, as compared with results by Karunasena et al. [17].This is in principle a more challenger problem than in
the previous example, as there are no symmetries. However, the same conclusions drawn above apply unchanged
to this case.

Table 1. Results of central displacements and bending moments for the uniformly loaded, simply supported plate.

Mesh DOF wc/(qL
4/100K) Mc/(qL

4/100)

2×2 25 0.71857 4.30936

4×4 81 0.48866 4.62130

8×8 289 0.42729 4.74006

16×16 1089 0.41153 4.77594

Reference solution[16] 0.4062 4.7890
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Table 2. First five natural frequencies of a simply supported square plate using plate hybrid elements.

Element Mesh Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

HMPT6-1MM

4×4 4.16572 6.08796 6.16202 7.64991 7.81313

8×8 4.35650 6.66892 6.69717 8.33015 9.03759

16×16 4.41982 6.74163 6.74964 8.48615 9.39471

HMPT6-2MM

4×4 4.16508 5.75764 5.82768 7.35590 7.77771

8×8 4.35645 6.30708 6.33379 7.87817 8.54723

16×16 4.41982 6.74163 6.74964 8.48615 9.39471

Analytical solution 4.44288 7.02481 7.02481 8.88577 9.93459

Table 3. First five natural frequencies of a rhombic plate (CFFF) with ratio L/h = 5.

Element Mesh Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

HMPT6-1MM

2×2 0.2616 0.7658 0.8661 1.3789 1.5545

4×4 0.3325 0.7542 1.4000 1.8364 2.4995

8×8 0.3717 0.8276 1.9261 2.2753 3.0551

HMPT6-2MM

2×2 0.2614 0.7624 0.8610 1.3663 1.5261

4×4 0.3154 0.7542 1.3954 1.8364 2.3728

8×8 0.3717 0.7852 1.9200 2.2630 3.0641

Reference solution [17] 0.3770 0.8170 1.9810 2.1660 3.1040

6 Conclusions

We proposed a more general approach of the Morley plate element, which is based on a hybrid frequency-
dependent plate formulation that satisfies the homogeneous elastodynamic plate governing equations.

The eigenfrequency evaluations with the implemented element showed good convergence, although we do
not observe better results by applying two mass matrices. We are presently carrying out investigations for the time
response in terms of modal analysis. This would elucidate whether or not additional mass matrices contribute to
better results for plate elements, as this is definitely the case for beam and membrane elements.
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