
Thermoelastic stationary analysis of non-oriented grain steels using BEM

Caio C. C. Moura1, Andrés F. Galvis2, Paulo Sollero1

1School of Mechanical Engineering, University of Campinas,
Campinas, 13083-860, São Paulo, Brazil
caiomoura@fem.unicamp.br, sollero@fem.unicamp.br
2School of Mathematics and Physics, University of Portsmouth
Portsmouth PO5 1NY, United Kingdom
andres.galvis@port.ac.uk

Abstract. This work deals with a thermoelastic analysis of anisotropic cold-rolled non-oriented grain steels (FeSi)
where the material is subjected to severe thermal and inertial loads. Following the stationary thermoelasticity for-
mulation of the boundary element method (BEM), this model focuses on the 2D study of these materials when
the elastic properties are temperature-dependent. The cold rolling process promotes a deformed microstructure on
steels with 3%Si. After the cold rolling process, this material is subjected to an annealing process to recrystallize
the microstructure. This process promotes crystallographic texture in the material, with a strong Goss fiber and
weak (hkl)[110] and (111)[uvw] fibers. That is, although classified as non-oriented grain steel after the annealing
process, steels with 3%Si produced by the cold-rolled process have crystallographic texture in all stages of man-
ufacturing, resulting in an anisotropic material. An industrial application is shown to illustrate the feasibility of
using the presented formulation, and the stationary thermomechanical response of the material. Taking advantage
of the BEM capabilities to solve high gradients and secondary mechanical fields within the domain.
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1 Introduction

The steady growth in the complexity of engineering projects reflects the present fast technological advance-
ment. To enable projects that are increasingly efficient and competitive, which take into account complex requests,
it becomes necessary to use adequate computational tools. It is common for a large amount of equipment, machin-
ery, and even structures to contain components that operate under temperature gradients that give rise to thermoe-
lastic stresses. These stresses are provoked by important engineering phenomena, including fatigue failure and the
formation and spread of cracks, as well as other events that jeopardize component structural integrity. Mathemati-
cal models that describe the thermoelastic phenomenon can be found in abundance in the literature (Salençon [1];
Gaul et al. [2]; Ieşan [3]). Therefore, it is critical to comprehend these stresses and strains in order to use the proper
failure criterion and technical considerations when dimensioning these components.

In order to preserve better fidelity to the original problem, computational modeling techniques must be able to
account for all of the major boundary conditions. This faithfulness is closely tied to the safety and dependability of
the project. In that cases, it becomes essential to use numerical techniques to approximate solutions for problems
with complex requests. The BEM stands out with greater applicability to thermoelastic solutions among the various
existing approaches. In this work, a stationary state BEM equation, described by Gaul et al. [2], will be used to
solve a thermoelastic problem in a continuum media.

The continuum media analyzed in this work is a non-oriented silicon steel at macroscopic length scale. At the
nanoscale, non-oriented silicon steels have body-centered cubic cubic unit cell structure. Each grain is considered
as an anisotropic elastic media, with elastic properties varying depending on the lattice structure and chemical
composition. At the macroscale, each material point is represented by a set of non-periodic polycrystal aggregates
(Nygårds [4]; Kamaya [5]; Galvis et al. [6]). Then, a stochastic morphological grain assembly with its distinct
crystalline orientations can be modeled to approximate the macroscopic elastic properties.

In general, studies that evaluated the effects of thermal and inertial loads on non-oriented grain steels approx-
imated the elastic properties as isotropic. However, non-oriented steels produced by the cold-rolled process show
orthotropic elastics properties. Deva et al. [7] and Moura et al. [8] observed that the parameters of the cold rolling
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process influence the anisotropy of the ferritic steels mechanical properties. In addition, the crystallographic ori-
entation of each grain is not random according to Franke et al. [9]. Cunha and Paolinelli [10] observed peaks of
texture intensity at (110)[001], Goss component, and weak γ fiber with peaks close to (111)[112] on a sample of
non-oriented silicon steel after recrystallization at the end of the cold-rolled process, indicating that the material
has certain predominant crystallographic orientations.

In the present work, a BEM stationary thermoelasticity formulation is applied to evaluate the influences of
thermal and inertial effects on a non-oriented silicon steel continuum media, considering the orthotropy of its
elastic properties temperature-dependent. The results obtained by numerical integration are compared to results
obtained with the exact and finit element method (FEM) solutions.

2 Mathematical model

For a generally anisotropic two-dimension model, the constitutive relationship between the stress σij and
strain εij considering temperature changes is governed by the Duhamel-Neumann relation:

σij = Cijklεij − γijθ, (1)

where Cijkl is the material stiffness coefficients, θ is the temperature change, and γij is the thermoelastic tensor
given by γij = Cijklαkl, for αij being the coefficients of linear expansion. According Gaul et al. [2], substituting
the equation (1) into Cauchy’s equation of motion

σij,j + ϱbi = ϱv̇i, (2)

being ϱ the material density, bi is a body force of arbitrary nature, and v̇i the acceleration of the material particle,
the field equation of thermoelasticity is obtained in terms of displacements ui:

Cijkluk,lj − γijθ,j + ϱbi = ϱv̇i. (3)

In the case of static thermoelasticity, all physical variables are independent of time; i.e., v̇i is vanished.
Equation (3) then reduces to

Cijkluk,lj − γijθ,j + ϱbi = 0, (4)

where bi will be considered in this work as a inertial load.

3 Boundary integral equation for stationary thermoelasticity

The boundary integration equation (BIE) in the direct BEM formulation for a two-dimension anisotropic
solid, when the temperatures θ or heat flux q are previously known on boundary, provides an integral relation
between tractions ti and displacements ui on the boundary Γ of the domain Ω. The thermoelastic representation
formula is given by (see, e.g. Gaul et al. [2] and Sollero and Aliabadi [11])

cij(z0k)uj(z0k) +

∫
Γ

Tmi(zk, z0k)ui(zk)dΓ =

∫
Γ

Umi(zk, z0k)ti(zk)

+

∫
Γ

Umi(zk, z0k)γijθnjdΓ−
∫
Ω

fel
i Umi(zk, z0k)dΩ,

(5)

for
fel
i = γijθ,j − ϱbi. (6)

In the equations (5) and (6), the term cij is given by δij/2 for a smooth boundary; Tmi and Umi are the
fundamental solution for tractions and displacements, respectively, in function of source z0k and field zk points on
Γ of the complex plane. The displacements ui and tractions ti are computed on Γ. The displacement fundamental
solution is given by

Umi(zk, z0k) = 2Re [Pi1Aj1logz1 + Pi2Aj2logz2] , (7)

and for tractions

Tmi(zk, z0k) = 2Re [Qi1(µ1n1 − n2)Aj1/(z1 − z01) +Qi2(µ2n1 − n2)Aj2/(z2 − z02)] , (8)

where Pij , Qij , and Aji are complex constants which depend on the material elastic constants; µj is the roots of
the characteristic equation of the anisotropic material and Re is the operator to obtain the real part of a complex
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result (Sollero and Aliabadi [11] and Lekhnitskii [12]). Lastly, z(µ) is a generalized complex variable defined in
terms of µ and the difference of coordinates between the field xi and source points xp

i , given by

z = (x1 − xp
1) + µ(x2 − xp

2). (9)

The volume integral in the right-hand-side of the equation (5) needs to be analytically transformed into
boundary integral ones so as to restore the distinctive feature of the BEM as a boundary solution computational
technique. The dual reciprocity formulation technique (DRBEM), proposed by Brebbia and Dominguez [13], was
used to solve the volume integral. The discretization of the boundary integrals was performed with quadratic
continuous boundary elements and the solutions was implemented using FORTRAN language.

4 Results

Non-oriented silicon steels are mainly applied in electrical machines under inertial loads by centrifugal forces
and temperature rise without a temperature gradient, i.e., the heat flux is given by q = −kijθ,jni and equals to
zero. For kij being the thermal conductivity tensor. To satisfy this boundary condition, θ,j is equals to zero and
the therm γijθ,j is vanishes from the equation (6). Therefore, de equation (6) becomes

fel
i = ϱbi. (10)

A few numerical examples are presented in this section to test the efficiency of the proposed formulation for
stationary thermoelasticity considering inertial and thermal effects on non-oriented silicon steel according to the
application in the construction of electrical motor rotors in the form of lamination stacks. The material properties
are shown below.

4.1 Material properties

In this work, the elastic properties were experimentally obtained from a sheet sample of a polycrystalline non-
oriented silicon steel with 3.3% Si and 0.30 mm of thickness produced by the cold-rolled process. An orthotopic
Cij was calculated from experimental results, by the relation Cij = S−1

ij , for Sij defined by elastic constants and
Poisson’s ratio of the material, as follows

Sij =


1/E1 −v21/E2 0

−v12/E1 1/E2 0

0 0 1/G12

 . (11)

The elastic constants and Poisson’s ratio were measured experimentally by tensile tests, at room temperature
T , performed in a traction test machine INSTRON 5583 according to ASTM E8/E8M standard [14]. To measure
the Young’s moduli in directions x and y, the Poisson’s ratio v12 and shear moduli G12, the samples were pre-
pared according to the Figure (1). Sample measurements were made in real time during the tensile test using a
displacement point detector.

X

Y

Thickness = 0.30 mm

Rolling direction

E11 samples E22 samples

Figure 1. Specimen to obtain the elastic properties in function of principal directions by tensile test.
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The temperature-dependence was calculated through the elastic constants into Sij in function of the body
temperature during the solution according the equation (12) obtained from the ASME Table A-1 [15] for low
and intermediate alloy steels in temperature range 21 → 204 °C. E(T ) is Young’s modulus in the function of
temperature and Eo is Young’s modulus in ambient temperature. A low-alloy steel is a type of metal mixture
composed of steel and another metals that possess desirable properties. Low-alloy steel contains about 1% − 5%
of alloying elements.

E(T ) = Eo − 0.018T 1.235. (12)

The coefficient of thermal expansion α is given by ATI [16] for 20 → 300 °C temperature range. The main
properties of the material considered in this work measured in ambient temperature are shown in Table 1.

Table 1. Thermoelastic properties experimentally obtained of a non-oriented silicon steel with 3.3%Si.

E11 [GPa] E22 [GPa] G12 [GPa] v12 α [°C−1](20-300°C) Density [kg/m³]

162.00 ± 4.50 152.00 ± 2.00 63.28 ± 1.75 0.28 1.29× 10−5 7650

4.2 Numerical examples

In the face of the material properties experimentally obtained, the first step in the BEM solution validation
procedure consists of numerically comparing exact and FEM solutions to evaluate the accuracy of the results. In
this sense, three numerical examples are shown considering thermal, inertial, and tractions as boundary conditions.
The elastic properties were considered temperature-dependent in all examples.

Linear thermal expansion in a bar

First, a linear thermal expansion case of a bar is solved in the model showed in Figure 2. The numerical
results is compared to the exact solution

∆L = αLoθ, (13)

for ∆L being the linear thermoexpansion and Lo the initial length. In this case, the sheet domain was modeled as
a square with dimensions equal to 1 m under a thermal load θ = 1 °C/step, displacements in x1 direction equal
to zero on the left and right sides, and fully constraint at the bottom. The BEM discretization was done with 3
discontinuous quadratic boundary elements per edge and 9 equidistant internal points in the domain with (0.5,y)
coordinates.

u1 = 0

1 
m

X

Y

 θ
 =

 1
 º

C
/s

te
p

ui = 0

1 m

u1 = 0

Figure 2. Linear thermoexpansion boundary conditions and the indication of the regions in which the results are
shown.

The u2 results along the internal points until the boundary are shown for the first step analysis in Figure (3).
The BEM solution achieved good accuracy in the results when compared to the exact solution. The maximum
relative error between BEM results and exact results calculated by equation (13) was 0.36%. Indicating that the
BEM results presented an excellent accuracy with the exact solution.
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Figure 3. The u2 results along the internal points until the boundary for the first step analysis for the linear
thermoexpansion problem in a bar.

Fixed body under thermal expansion

The domain modeling was kept as a square with dimensions equal to 1 m under a thermal load θ = 1 °C/step.
The boundary supports were defined as fully constraint at the bottom and the left-hand side. The BEM discretiza-
tion was done with 19 discontinuous quadratic boundary elements per edge. The BEM results are compared to a
FEM results model with the same boundary conditions solved by the commercial Ansys Mechanical software ®.

1 
m

X

Y

 θ = 1 ºC/step

1 m

A

B

ui = 0

ui = 0

Figure 4. Boundary conditions of the fixed body case and the indication of the regions in which the results are
shown.

Figure (5) shows the comparison between BEM and FEM results of the u1 and u2 displacements in function
of the steps. The BEM solution achieved good accordance in the results when compared to the FEM solution.
The maximum error between BEM and FEM results was 0.15% for u1 (Figure 5a) and 0.85% for u2 (Figure 5b).
In addition, figure (6) showns de comparison between von Mises stress results. The accuracy of the results was
satisfactory and the stress gradient obtained in the BEM solution is close to the solution obtained by FEM.
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(a) u1 results at point B.
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(b) u2 results at point B.

Figure 5. Comparisons of the BEM and FEM displacement results at points B in function of the step number
analysis.
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Figure 6. Comparision between FEM and BEM solutions for a recessed boundary on edge A in the first step.

Thermoelastic problem with inertial forces

The domain dimensions are shown at figure (7). The boundary conditions were defined as: fully constraint
on the left-hand edge, thermal load θ = 1 °C/step, the body under the action of the acceleration of gravity, and
the right-hand edge is under a distributed force where the tractions was defined as σ22n2 = −200 Pa. The
BEM discretization was done with 11 discontinuous quadratic boundary elements per edge. The BEM results are
compared to a FEM results model with the same boundary conditions solved by the commercial Ansys Mechanical
software ®.

2 
m

 θ = 1 ºC/step
g = - 8.91 m/s²

ui = 0

2 m

1 
m
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X

Y

σ22n2 = - 200 N

1 m

Figure 7. Boundary conditions of the thermoelastic problem with inertial forces case and the indication of the
regions in which the results are shown.

Figure (8) shows the comparison between BEM and FEM results of the u1 and u2 displacements for all
step analysis. As with the examples shown above, BEM displacement results achieved good accordance when
compared to the displacement FEM results. The maximum error between BEM and FEM solutions was 0.31%
for u1 results (Figure 8a) and 3.80% for u2 results (Figure 8b). Focusing on the maximum error obtained in u2

results, it is possible to notice that, although the error was the largest compared to the results obtained in the
other solutions presented in this work, the error variation is still small considering the order of complexity of the
boundary conditions for this case.
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(a) u1 results at point A.
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(b) u2 results at point A.

Figure 8. Comparison of the BEM and FEM displacement results at point A for the thermoelastic problem with
inertial forces.
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5 Conclusions

This work implemented a BEM stationary thermoelasticity formulation capable of considering thermal and
inertial effects on a non-oriented silicon steel continuum media, considering the orthotropy of its elastic properties
temperature-dependent. At the end, the small magnitude order of the obtained error value between BEM, exact,
and FEM solutions, indicated that the BEM pointed out a good performance.
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