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Abstract. This paper presents a Generalized Finite Element Method (GFEM) formulation for mechani-
cal analysis of Functionally Graded Material (FGM) plates acting both under mechanical loads and under
the effect of high gradient thermal fields. It describes the development, implementation and validation of
said formulation, based on a composite plate model ruled by Reissner-Mindlin’s first-order shear theory.
The calculation of temperature field along the structure’s thickness is made by solving the stead-state
heat conduction problem through Finite Difference Method, considering given the boundary conditions
on both faces of the plate and thermal conductivities of the base materials. Elasticity moduli and thermal
conductivities’ temperature-dependence is considered. Thickness-wise numerical integration procedures
are used to compute both the stiffness matrices of the plate and the thermal portions of nodal force
vectors. A 𝐶𝑘 continuous GFEM model with three-noded triangular shaped elements is considered and
a linear strain-displacement relationship is adopted. Shepard Partitions of unit with smooth approxima-
tion functions are used and enriched by linearly independent polynomials. Solutions are obtained through
Newton-Raphson method.
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1 Introduction

Due to the increasing usage of FGM in the construction of space shuttles and other structures
designed to operate in environments with harsh thermal conditions, it is important to further develop
analysis models capable of representing the coupling of mechanical and thermal effects in this kind of
composite. Being a relatively new kind of material, initially developed in 1987 by the Science and
Technology Agency, of Japan [1], much research has been done in the area, namely by authors such
as Reddy [2] and Park and Kim [3], but there are still many topics that need to be researched and
understood.

Parallel to this, in recent years, GFEM has risen as a valuable alternative to conventional FEM
and meshless methods in the solution of boundary value problems, having less dependency on mesh
geometry than conventional FEM and lower computational cost than the main meshless methods as well
as easier implementation of Dirichlet boundary conditions. An important advance in this area was made
by de Barcellos et al. [4], who developed a 𝐶𝑘 continuous formulation of the method. Given that GFEM
may be a valuable tool in the analysis of complex materials, this paper aims to initiate and instigate the
development GFEM models for FGM plates.

2 Theoretical Formulation

2.1 FGM Properties

As proposed by Reddy [5], eq. 1 represents material properties’ gradation through the thickness of
the plate, being 𝑉𝑐(𝑧) the volume fraction of ceramic material at a certain coordinate 𝑧, 𝑃𝑐 and 𝑃𝑚 the
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properties of the metallic and ceramic materials and 𝑛 the FGM’s distribution parameter.

𝑃 (𝑧) = (𝑃𝑐 − 𝑃𝑚)𝑉𝑐 + 𝑃𝑚,

𝑉𝑐(𝑧) =
(︂

1
2 + 𝑧

𝐻

)︂𝑛

𝑛 ≥ 0, (1)

For the purposes of this study, 𝜈 and 𝛼 are considered to be constant for both materials, while 𝐸
and 𝑘 are considered to be temperature dependent, following eq. 2 [3].

𝑃𝑚(𝑇 ) (or 𝑃𝑐(𝑇 )) = 𝑃𝑜(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

3 + 𝑃3𝑇
3) (2)

It’s important to observe that, even though the plate is a composite structure, each point of it
behaves isotropically. Figure 1 represents the FGM’s geometry and composition.

Figure 1. FGM plate’s geometry and coordinate system. Source: Lee et al. [6], adapted

2.2 Mechanical behavior

Reissner-Mindlin’s plate theory is one of the main First-order Shear Deformation Theories (FSTD),
and may be represented by the following set of equations [7].

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) + 𝑧𝜑𝑥(𝑥, 𝑦),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) + 𝑧𝜑𝑦(𝑥, 𝑦), (3)
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦)

where 𝑢, 𝑣 and 𝑤 are the coordinates of a point in the deformed configuration, index ( )𝑜 represents the
position of the plate’s reference plane and 𝜑𝑥 e 𝜑𝑦 are cross-section rotations around axis 𝑥 and 𝑦.

𝜑𝑥 = 𝜕𝑢

𝜕𝑧
, 𝜑𝑦 = 𝜕𝑣

𝜕𝑧
(4)

Bending behavior of a Mindlin plate under mechanical loads can then be described by the constitutive
equations: ⎧⎨⎩ N

M

⎫⎬⎭ =

⎡⎣ A B

B D

⎤⎦ ⎧⎨⎩ 𝜀𝑜

𝜅

⎫⎬⎭ , (5)

Q𝑡 = E𝛾𝑐,

where

A =
∫︁ 𝐻/2

−𝐻/2
Q 𝑑𝑧, B =

∫︁ 𝐻/2

−𝐻/2
𝑧Q 𝑑𝑧, D =

∫︁ 𝐻/2

−𝐻/2
𝑧2Q 𝑑𝑧 (6)

and

E = 𝑘

∫︁ 𝐻/2

−𝐻/2
e 𝑑𝑧, e =

⎡⎣ 𝐶𝑥
44 𝐶𝑥

45

𝐶𝑥
45 𝐶𝑥

55

⎤⎦ (7)

In the analysis of laminated composite eqs. 6 and 7 and generally computed through the sum of
layer-wise components. However, as FGM aren’t divided in layers and their properties aren’t easily
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computed by analytic integration, these matrices must generally be calculated by numeric integration
processes or other approximation methods. This paper uses Simpson’s 3/8 rule to compute these and
other through-thickness integrals, dividing the coordinate’s domain into a series of sub-intervals and
integrating each one by cubic polynomial approximations.

Considerations about deformations due to effect of the thermal field will be made in Section 2.4.

2.3 Temperature field distribution

The temperature field 𝑇 (𝑧) is given by the solution of a one-dimensional stead state heat conduction
problem, with prescribed temperatures on the boundaries and no internal heat sources. Equation 8
presents this problem [5], being 𝑘(𝑧, 𝑇 ) the FGM’s thermal conductivity. .

− 𝑑

𝑑𝑧

(︂
𝑘(𝑧, 𝑇 )𝑑𝑇

𝑑𝑧

)︂
= 0 in 𝑧 ∈ (−𝐻/2, 𝐻/2),

𝑇 (−𝐻/2) = 𝑇𝑚, (8)
𝑇 (𝐻/2) = 𝑇𝑐,

Due to the dependency that 𝑘(𝑧, 𝑇 ) has on the distribution of ceramic and metallic material in
the plate, an analytical solution for an arbitrary value of 𝑛 is not possible. Therefore, this solution is
usually obtained numerically, through methods such as the Finite Difference Method (FDM), used in
this study. Furthermore, as this paper considers the effect of temperature in the conductivity 𝑘(𝑧, 𝑇 ), an
iterative procedure had to be adopted to compute 𝑇 (𝑧). The 𝐿2-norm loss function was used to evaluate
convergence.

2.4 Thermal effects in bending

Since FGM are considered to be isotropic at each coordinate 𝑧, the stress-strain relationship for the
FSTD model can be expressed by eq. 9.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
𝑄11 𝑄12

𝑄12 𝑄22

𝑄66

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜀𝑥 − 𝛼Δ𝑇

𝜀𝑦 − 𝛼Δ𝑇

𝛾𝑥𝑦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ → 𝜎 = Q
(︀
𝜀 − 𝒯 𝜀

)︀
(9)

where 𝒯 𝜀 = 𝛼Δ𝑇1 is the strain component due to thermal dilation, and 1 = {1, 1, 0}𝑇 . Transverse shear
equations aren’t affected by temperature effects:⎧⎨⎩ 𝜏𝑦𝑧

𝜏𝑥𝑧

⎫⎬⎭ =

⎡⎣ 𝑄44

𝑄55

⎤⎦ ⎧⎨⎩ 𝛾𝑦𝑧

𝛾𝑥𝑧

⎫⎬⎭ → 𝜏 = Q𝑠𝛾 (10)

Isotropic behavior determines that 𝑄11 = 𝑄22 = 𝐸/(1 − 𝑣2), 𝑄12 = 𝑣𝑄11, 𝑄66 = 𝐸/2(1 + 𝑣), and
𝑄44 = 𝑄55 = 𝐸/2(1 + 𝑣).

Given the constitutive equation described by eq. 5, it is true for FSTD that:

𝜀 = 𝜀𝑜 + 𝑧𝜅 (11)

A constitutive equation for FGM under thermomechanical effects can be obtained from the definition
of in-plane and moment force resultants, described in eq. 12.

N =
∫︁ 𝐻/2

−𝐻/2
𝜎 𝑑𝑧 and M =

∫︁ 𝐻/2

−𝐻/2
𝜎𝑧 𝑑𝑧. (12)

Applying eqs. 9 and 11 to the in-plane force resultant in eq. 12,

N =
∫︁ 𝐻/2

−𝐻/2
Q 𝑑𝑧⏟  ⏞  

A

𝜀𝑜 +
∫︁ 𝐻/2

−𝐻/2
𝑧Q 𝑑𝑧⏟  ⏞  

B

𝜅−
∫︁ 𝐻/2

−𝐻/2
Q 𝒯 𝜀 𝑑𝑧⏟  ⏞  

𝒯 N

(13)
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Similarly, for the moment force resultant:

M =
∫︁ 𝐻/2

−𝐻/2
Q𝑧 𝑑𝑧⏟  ⏞  

B

𝜀𝑜 +
∫︁ 𝐻/2

−𝐻/2
𝑧2Q 𝑑𝑧⏟  ⏞  
D

𝜅 −
∫︁ 𝐻/2

−𝐻/2
Q 𝒯 𝜀𝑧 𝑑𝑧⏟  ⏞  
𝒯 M

(14)

The thermal components in eqs. 14 and 13 are given by:

𝒯 N =
∫︁ 𝐻/2

−𝐻/2
Q𝛼Δ𝑇 𝑑𝑧⏟  ⏞  
0Q

1 = 0Q1 and 𝒯 M =
∫︁ 𝐻/2

−𝐻/2
Q𝛼Δ𝑇𝑧 𝑑𝑧⏟  ⏞  

1Q

1 = 1Q1. (15)

Hence, the FGM plate’s constitutive relation becomes:⎧⎨⎩ N

M

⎫⎬⎭ =

⎡⎣ A B

B D

⎤⎦ ⎧⎨⎩ 𝜀𝑜

𝜅

⎫⎬⎭ −

⎧⎨⎩ 𝒯 N
𝒯 M

⎫⎬⎭ , where

⎧⎨⎩ 𝒯 N
𝒯 M

⎫⎬⎭ =

⎧⎨⎩ 0Q
1Q

⎫⎬⎭ 1. (16)

It’s noticeable that this relation is formally the same used for anisotropic laminates. However, the
procedure for computing the constitutive matrices A, B, D, 0Q e 1Q is different and must be done via
numeric integration.

2.5 GFEM applied to FGM

As presented by Mendonça [7], from the matrix equation that represents the approximated form of
Principle of Virtual Work (PVW) for FSTD plates it is possible to obtain, in compact notation,

[K𝑓 + K𝑐] U = F (17)

being U the nodal displacement vector, F the nodal force vector, and K𝑓 and K𝑐 stiffness matrices.
Thermal deformation introduces a new force component, defined in eq. 18, which must be added to

the vector representing mechanical loads in order to form the nodal force vector F.

𝒯 F =
∫︁

Ω
B𝑇

𝑓

⎧⎨⎩ 𝒯 N
𝒯 M

⎫⎬⎭ 𝑑Ω, (18)

Therefore, eq. 17 becomes:

[K𝑓 + K𝑐] U = 𝑚F + 𝒯 F (19)

The usage of FEM shape functions as a Partition of Unit (PU) that can be enriched by a set of linearly
independent functions defines GFEM. Thus, it is possible to increase their capability of representing
solutions without the need of increasing complexity and number of elements. For this study, polynomial
enrichment functions were used.

3 Numerical results

Two FGM problems were analyzed to validate the GFEM formulation developed and analytical
solutions were used to verify numerical results. In both cases, the square plates where divided into
a regular mesh of 128 triangular elements with linear shape functions, and GFEM enrichment was
performed through the usage of quartic polynomial functions. The solutions were obtained by using
Newton-Raphson’s method.

3.1 Material properties

The materials adopted to compose the FGM plate were stainless steel and zirconia. Both materials
were considered to have Poisson ratio 𝜈 = 0.3 and temperature-independent thermal expansion coefficients
𝛼𝑚 = 1.682 × 10−5 K−1 and 𝛼𝑐 = 3.013 × 10−5 K−1. Elasticity moduli and thermal conductivities were
considered to behave as described by eq. 2 and their coefficients are presented at Table 1 [2].

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022



B.P. Santos, P.T.R. Mendonça

Table 1. FGM plate’s temperature-dependent material properties

Property 𝑃0 𝑃−1 𝑃1 𝑃2 𝑃3

𝐸𝑚 (Pa) 201.04 × 109 0 3.079 × 10−4 −6.534 × 10−7 0
𝐸𝑐 (Pa) 244.27 × 109 0 −1.371 × 10−3 −1.214 × 10−6 −3.681 × 10−10

𝑘𝑚 (W/mK) 15.379 0 −1.264 × 10−3 2.092 × 10−6 −7.223 × 10−10

𝑘𝑐 (W/mK) 1.7000 0 1.276 × 10−4 6.648 × 10−8 0

3.2 Square Mindlin FGM plate under thermal bending

A square plate with length 𝐿 = 0.5 m, thickness 𝐻 = 0.05 m and distribution coefficient 𝑛 = 1.0
was considered to be simply supported over its vertices. Top and bottom temperatures were assumed as
𝑇𝑐 = 600K and 𝑇𝑚 = 300K and deformation was considered to originate solely from thermal dilation.
Figure 2 represents material distribution over thickness and the temperature field computed with FDM.
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Figure 2. Volumetric fraction of ceramic 𝑉𝑐(𝑧) and temperature field 𝑇 (𝑧) over plate’s thickness

Figure 3 shows the results obtained using GFEM (due to the orthogonal symmetry of the problem,
𝑣𝑜 and 𝜓𝑜

𝑦 possess behavior equivalent to that shown for 𝑢𝑜 and 𝜓𝑜
𝑥). An analytical solution was created

and used as reference to calculate the errors of the numerical model.
At Table 2 the maximum value of each type of displacement in Mindlin’s plate theory is presented,

as well as relative errors associated to those values, maximum errors over the studied domain and Mean
Squared Error of the mesh’s nodes.

Table 2. Results of GFEM analysis of FGM under thermal bending

Displacement Maximum Error max. displ.(%) Max. Error(%) MSE

𝑤𝑜 (m) 9.60 · 10−3 0.012 0.012 1.4 · 10−8

𝑢𝑜 (m) 6.92·10−4 0.011 0.015 7.6 · 10−9

𝑣𝑜 (m) 6.92·10−4 0.010 0.015 7.6 · 10−9

𝜓𝑜
𝑥 0.0383 0.012 0.012 1.3 · 10−8

𝜓𝑜
𝑦 0.0383 0.012 0.012 1.3 · 10−8

By analyzing this data, it’s possible to perceive that the GFEM model was able to accurately
represent the deformed configuration of the FGM plate, producing small errors (with order of magnitude
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Figure 3. Displacements over 𝑥 (behavior of 𝑣𝑜 and 𝜓𝑜
𝑦 over 𝑦 is similar to that of 𝑢𝑜 and 𝜓𝑜

𝑥, respectively)

of 0,01%).

3.3 Square thin FGM plate under mechanical bending

The second situation analyzed was that of a thin FGM plate (length 𝐿𝑥 = 𝐿𝑦 = 0.5 m and𝐻 = 0.001)
with distribution coefficient 𝑛 = 1.0. This plate was considered to be simply supported over its edges,
𝑥 = 0, 𝐿𝑥 and 𝑦 = 0, 𝐿𝑦, and submitted to transversal load as described by eq. 20, with 𝑞𝑚𝑛 = 100 Pa.
For this case of study, there weren’t considered to exist stresses related to thermal effects.

𝑞(𝑥, 𝑦) = 𝑞𝑚𝑛 sen 𝜋𝑥
𝐿𝑥

sen 𝜋𝑦
𝐿𝑦

(20)

Because of its reduced thickness, this problem can be considered to be a Kirchoff plate, and the
analytical solution with that theory described as:⃦⃦⃦⃦

⃦⃦⃦⃦
⃦⃦
𝑢𝑜(𝑥, 𝑦) = 𝑈𝑚𝑛 cos(𝜋𝐿−1

𝑥 𝑥) sen (𝜋𝐿−1
𝑦 𝑦),

𝑣𝑜(𝑥, 𝑦) = 𝑉𝑚𝑛 sen (𝜋𝐿−1
𝑥 𝑥) cos(𝜋𝐿−1

𝑦 𝑦),

𝑤𝑜(𝑥, 𝑦) = 𝑊𝑚𝑛 sen (𝜋𝐿−1
𝑥 𝑥) sen𝜋(𝐿−1

𝑦 𝑦),

(21)

being that, after considering the assumptions made for this problem, the coefficients 𝑈𝑚𝑛, 𝑉𝑚𝑛 and 𝑊𝑚𝑛

become 𝑈𝑚𝑛 = 𝑉𝑚𝑛 = −1.0355 · 10−7 m and 𝑊𝑚𝑛 = 9.3557 · 10−4 m.
Figure 4 shows the displacements 𝑤𝑜 and 𝑢𝑜 calculated with the developed formulation at the

coordinate 𝑦 = 𝐿𝑦/2, where their values reach their maximum. Displacement 𝑣𝑜 behaves at 𝑥 = 𝐿𝑥/2 in
the same way shown for 𝑢𝑜.

The maximum value of each displacement and the relative errors associated to them are presented
at Table 3, as well as the MSE of the model’s nodes.

Table 3. Results of GFEM analysis of a thin FGM plate under sinusoidal load

Displacement Maximum Error max. displ.(%) Max. Error(%) MSE

𝑤𝑜 (m) 9.356 · 10−4 1.4·10−3 0.011 5.0 · 10−10

𝑢𝑜 (m) 1.036·10−7 1.3·10−3 0.056 2.0 · 10−8

𝑣𝑜 (m) 1.036·10−7 1.2·10−3 0.056 1.9 · 10−8
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Figure 4. Displacements 𝑤𝑜 and 𝑢𝑜 over 𝑥 (behavior of 𝑣𝑜 over 𝑦 is similar to that of 𝑢𝑜 over 𝑥)

As with the results for the thermal problem, it’s possible to see that the errors associated with the
numerical solution aren’t expressive, with a maximum relative error of 0.056% in a non-critical region
and MSE below 10−7 for the studied structure.

4 Conclusions

The developed GFEM model was able to accurately represent FGM plates, both under stresses
originated from harsh thermal gradients and mechanical loads. The temperature dependence of thermal
conductivities was incorporated to the existing mechanical models of FGM plates and the developed the-
oretical and numerical advances were successfully validated through comparison with analytical solutions.
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