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Abstract.
In many engineering optimization problems the number of function evaluations is severely limited by time

or computational cost. In addition, the representation of randomness due to noise and uncertainties in the model
is essential. One strategy adopted for these cases is solve the problem through response surfaces, or meta-models,
especially Kriging model. A traditional Kriging-based algortihm optimization is the Global Efficient Optimization
(EGO) method. An most recent algorithm for stochastic problems was sEGO in which it introduces a parcel that
reflects the intrinsic noise of the stochastic function in your framework. In this paper these optimization algorithms
will be approached through some examples for demonstrate the importance of the variance quantifying approach
in the optimization process through Kriging meta-model, highlighting the influence of the noise amplitude in the
choice of the optimization strategy. The conclusions obtained may serve as a guideline for choose the best approach
for each type of optimization problem.
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1 Introduction

There are several sources of uncertainty that can be present in the modeling of engineering problems. Practical
examples can be observed when analyzing a beam by considering a higher-order beam model, plasticity, damage
theories, and other sources of non-linearity, and approximating the solution using a state-of-the-art finite element
model. All of this procedure would still be a rough representation of reality if the intrinsic randomness of materials
(rock, soil, concrete) and loads (wind, earthquake motion) were disregarded and a deterministic average was used
[1].

The representation of the stochastic problem occurs through objective functions that can be formulated as
expected value functions (E), being expressed as following:

f(x) = Eθθθ [y(x, θθθ)] , (1)

where x ∈ Rnx is the design vector, θθθ ∈ Rnθθθ is the random parameter vector, E is the expected value operator,
and y : Rnx × RnΘΘΘ → R is the system performance measure. Since the expected value in practical problems
can hardly be evaluated analytically, approximations using simulation, such as Monte Carlo integration (MCI), are
often applied.

In order to make an efficient optimization of these problems possible, intelligent optimization strategies suc-
cessfully coping with noisy evaluations sometimes are required. An alternative to high cost functions optimization
is approach the meta-models based optimization algorithms. The basic idea is that the metamodel acts as an inter-
polating curve or regressor of support points that have information from the objective function and its constraints
so that the results can be predicted without resorting to the use of the primary source (objective function) [2].

One of the most popular meta-model is the Kriging, this has a long and successful tradition for modeling and
optimizing deterministic computer simulations [3]. The great advantage of this meta-model is that it allows the
quantification of the uncertainty of the response surface through the mean square error (MSE) [4]. An extension
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for the application in noisy problems is Stochastic Kriging (SK) proposed by [5]. Figure 1 shows an example of
Kriging surface based on noisy observations, f(x, θθθ), where the bar is the noise amplitude.

Figure 1. Kriging meta-model on noisy observations

A traditional approach to optimization through Kriging is the Efficient Global Optimization method (EGO)
[6], this is one of the most popular algorithms for optimizing noiseless simulation; in this case, the fitted metamodel
is the Kriging deterministic model.

In stochastic simulation the EGO may not be very suitable, as it ignores noise in the observations, assuming
that samples were taken with infinite precision [7]. Research has been carried out to extend the EGO for stochastic
simulation, in the work of [3] he compares several algorithms based on Kriging to optimize functions with ho-
mogeneous noise, which means that the variance of the noise does not depend on the x position. And in [8] it
compares some algorithms with heterogeneous noise.

In this context of stochastic optimization, [9] developed the stochastic efficient global optimization algorithm
(sEGO). sEGO first uses MCI to approximate the objective function, as it provides not only an approximation to
the integral, but also the error variance. The error variance is then included in the SK structure, and the filling
criterion AEI is used to guide the addition of new points in the stochastic EGO structure.

The goal of this paper is compare the performance of those two Kriging-based algorithm optimization - EGO
and sEGO - on a analytic test functions with heterogeneous noise subject only to box constraint. Expected with
this demonstrate the importance of the variance quantifying approach in the optimization process through Kriging
meta-model, highlighting the influence of the noise amplitude in the choice of the optimization strategy.

The conclusions obtained may serve as a useful for researchers aiming to deal with optimization noisy prob-
lems. The insights will help to evaluate when it is advantageous to use kriging based algorithms with deterministic
representation of the function, i.e., with objective function approximation for a limited sampling. Or when use
variance information in the iterative process will be representative. This article is organized as follows. Section 2
provides a brief explanation of the Kriging meta-model studied, Section 3 details the Kriging-based optimization
algorithms (EGO and sEGO), Section 4 presents the analysis and results of the problem and, lastly, conclusions
are present in Section 5.

2 Kriging meta-model

2.1 Deterministic Kriging

In the interest of fitting a meta-model for the response f(x) at nx design points, the deterministic Kriging
assumes that the unknown response surface (ŷ) can be represented as [5]:
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ŷ(x) = M(x) + Z(x). (2)

where M(x) is a vector of known trend functions while Z(x) represents the extrinsic uncertainty imposed on the
problem due to predictor construction. Z(x) is define as a realization of a Gaussian random field with mean zero
and covariance-stationary.

What relates one observation to another is the covariance function, denoted
∑

z , also referred to as kernel.
Multiple covariance functions exist in the field of Gaussian process, the choice depends on prior hypothesis about
the unknown functions. One of the most commonly used kernel in Kriging literature are the stationary squared
exponential like a Gaussian base, Equation 3,focus on this research.

[∑
z

]
ij
= σzh(x

(i),x(j)) = σzexp

[
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(j)
k |
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where σz is the variance of uncertainty caused by the construction of the surrogate model, h is the correlation
vector, ck and pk are hyperparameters from the model.

The hyperparameters of these covariance function are usually estimated using Maximum Likelihood Estima-
tion (MLE) [2]. To deal with functions on the presence of noise or uncertainties [5] proposed the extension of
deterministic Kriging for stochastic Kriging (SK). We thus focus on SK for be capable of accommodating noisy
evaluations in the optimization framework.

The Kriging prediction and variance for a given point x+ are, respectively:

ŷ(x+) = µ̂+ hTΨ−1(y − 1µ̂) (4)

s2(x+) = σ̂2
z

[
1− hTΨ−1h+

(1− 1TΨ−1h)2

1TΨ−11

]
. (5)

where µ̂ is the trend of the SK model, σ̂2
z is the variance trend of the SK model, Ψ is the covariance matrix of the

all support points of Z and y is the vector of the approximate mean value of the objective function at each design
point, those parameters are define in [2].

2.2 Stochastic Kriging

To deal with functions on the presence of noise or uncertainties, the extension of deterministic Kriging for
stochastic Kriging (SK) was proposed [5]. We thus focus on SK for being capable of accommodating noisy
evaluations in the optimization framework.

In the stochastic Kriging (SK) it is added a parcel ϵ for meta-model construction, Equation 6, to account the
sampling variability inherent in a stochastic simulation, which represents an intrinsic uncertainty of the problem.

ŷ(x) = M(x) + Z(x) + ϵ(x). (6)

where ϵ(x) has zero mean and is independently and identically distributed across replications.
The SK prediction and variance for a given point x+ are, respectively:

ŷ(x+) = µ̂+ σ̂2
Zh

T
[∑

Z +
∑

ϵ

]−1

(y − µ̂1). (7)
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where δ(x+) = 1− 1T [
∑

Z +
∑

ϵ]
−1

σ̂2
zh(x

+), h is the correlation vector, µ̂ and σ̂2
z are the mean and variance

trend of the SK meta-model, respectively,
∑

Z is the covariance matrix of all the support points of Z,
∑

ϵ is the
covariance matrix of ϵ and y is the vector of the approximate mean value of the objective function at each design
point, those parameters are defined in [5].
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3 Kriging meta-model based optimization

Because the surrogate model, ŷ, is only an approximation of the true function f(x) we wish to optimize,
for enhance the accuracy of the model are made new function calls, define as infill points (IPs), in addition to the
initial sampling plan. The use of Kriging meta-model is attractive because, not only can it give good predictions of
complex landscapes, it also provides a credible estimate of the possible error in these predictions. So, in Kriging-
based optimization algorithm, the error estimates make it possible to make tradeoffs between sampling where
the current prediction is good (local exploitation) and sampling where there is high uncertainty in the function
predictor value (global exploration), allowing searching the decision space efficiently [6].

Kriging-based optimization algorithms start by simulating a limited set of input combinations (referred to as
initial sampling) and iteratively select new input combinations to simulate by evaluating an infill criterion (IC),
which reflects information from Kriging. The response surface is then updated sequentially with information
obtained from the newly simulated IPs. The procedure is repeated until the desired performance level is reached
and the estimated optimum is returned [10]. The remainder of this section briefly explains the search and the
replication strategy for each algorithm.

3.1 Expected Improvement - EI

The EGO algorithm of [11] chooses the alternative with maximum expected improvement (EI) as the next
infill point:

EI(x+) =
(
ymin − ŷ(x+)

)
Φ

(
ymin − ŷ(x+)

ŝ(x+)

)
+ ŝ(x+)ϕ

(
ymin − ŷ(x+)

ŝ(x+)

)
(9)

where Φ and ϕ are the cumulative distribution function and probability density function respectively, and ymin is
the smallest sampled value of y. Maximizing AEI(x+)leads to the new point x+ with the highest probability of
improvement, either by sampling toward the optimum or improving the approximation of the meta-model.

3.2 Augmented Expected Improvement - AEI

The sEGO algorithm of [12] chooses the alternative with maximum augmented expected improvement (AEI)
as the next infill point:

AEI(x+) = E[max(ymin − ŷ, 0)]

(
1− σ̂2

ϵ (x
+)√

ŝ2(x+) + σ̂2
ϵ (x

+)

)
(10)

where ŷ is SK predictor, ymin is the Kriging prediction at the current effective best solution, i.e., the point with
minimum among the simuleted point, with β ∈ (0, 0.5]. σ̂2

ϵ is the variance of the noise intrinsic to the stochastic
function and ŝ2 is SK variance. The first parcel of the expression is calculated as Equation 9.

4 Numerical test

In this section, the performance of the EGO and sEGO algorithms are compared in the optimization of noisy
functions in relation to the sample size approached to approximate the objective function. The basic setting for
executing the Kriging-based algorithms was n0 = 10, that represents the number of elements of the initial sample
space of the meta-model - adopted n = 10× k, where k is the dimension of the problem - distributed by the Latin
Hypercube [6] and the number of iterations was define for each case.

4.1 Function 01

A one-dimensional problem will be analyzed from [13]. The function f(x, θθθ) : X × Ω → R is given by:

f(x, θθθ) = 1 + 0, 2θx+ cos
(
0, 3(xθ)2

)
(11)

where x ∈ X = [−1, 7] is the search domain and θθθ ∈ Ω is the space formed by the uniform distribution random
variables θi ∼ U(1, σi). The case will be analyzed for σ1 = 1 and σ2 = 0, 2.
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The optimization problem consists of finding the minimizer and the minimum value of f(x). Figure 2 shows
the graph of the function for the cases θ0 ∼ U(1, 0) (deterministic), θ1 ∼ U(1, 1) and θ2 ∼ U(1, 0.2). For a
convergence of the stochastic curve, 100 000 replications were necessary.

Figure 2. Deterministic and stochastic function plot

The optimal values (fmin) and their (x∗) positions found by [13] ware: for σ1 = 1, fmin = 1, 0840 and
x∗
2 = 1, 8999; for σ2 = 0.2, fmin = 0, 6889 and x∗

1 = 2, 8709. In the Figure 4 e Table 1 are presented the
minimum value for θ ∼ U(1, 1) obtained using the EGO and sEGO algorithm, respectively, for different sample
sizes (nt). The stop criterion of the iterative process was defined by the maximum amount of infill points equal
to 20 and it was considered 20 simulations, i.e., 20 repetitions of the optimization process. First, the results was
presented in a statistical way using the box plot technique. Since the deterministic Kriging model does not consider
noise information from the objective function, the optimization process is performed considering the average of
the stochastic parameter sampling.

Figure 3. Boxplot for different sample sizes when θ ∼ U(1, 1)
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From Figure 4 it’s possible to conclude that by the EGO algorithm there was a greater dispersion of the
results presented a convergence with only 1000 samples. With low sample size both methods presented some
outliers. Now, compare the average of the values obtained, Table 1, it’s possible to observe that the sEGO algorithm
presented better performance when reaching the target value with a much smaller sampling. The conclusion is that
the sEGO algorithm presented the best performance reaching the target value with just 100 samples, while the
EGO needed 100,000.

A similar analysis will be made for the case where θ ∼ U(1, 0.2). In the Figure 4 e Table 1 are presented the
minimum value obtained using the EGO and sEGO algorithm, respectively, for different sample sizes (nt). The
stop criterion of the iterative process was defined by the maximum amount of infill points equal to 30 and it was
considered 30 simulations.

Figure 4. Boxplot for different sample sizes when θ ∼ U(1, 0.2)

Table 1. Mean minimum values for Function 01.

θ ∼ U(1, 1) θ ∼ U(1, 0.2)

EGO sEGO EGO sEGO

target value 1,084 0,6889

sample size

10 1.0205 1.0989 0.6803 0.6908

50 1.0452 1.0853 0.6846 0.6892

100 1.0539 1.0832 0.6867 -

100,000 1.0831 - - -

From Figure 4 it’s possible to conclude that by the EGO algorithm there was a greater dispersion of the results
and both presented outliers. Now, compare the average of the values obtained, ??, it’s possible to observe that the
sEGO algorithm presented better performance, but the both obtained interesting results for small samples.

4.2 Function 02

This second example was adapted from adapted from [14] for stochastic case. The function f(x, θθθ) : X×Ω →
R is given by:

f(x, θθθ) = (6x− 2)2sin(12x− 4).θ (12)
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where x ∈ X = [0, 1] is the search domain and θθθ ∈ Ω is the space formed by uniform distribution random variables
θi ∼ U(1, σi). The case will be analyzed for σ1 = 0, 2.

The plot of Figure 5 shows the input domain, to view the function’s key characteristics for the cases θ0 ∼
U(1, 0) (deterministic), θ1 ∼ U(1, 0.2) and θ2 ∼ U(1, 1). For a convergence of the stochastic curve 10 000
replications were necessary.

Figure 5. Deterministic and stochastic function plot

The optimal values (fmin) were [13]: for σ1 = 1, fmin = −9, 033 and for σ2 = 0.2, fmin = 0, 6889.
In the Figure 6 e Table 2 are presented the minimum value for θ ∼ U(1, 1) obtained using the EGO and sEGO
algorithm, respectively, for different sample sizes (nt). The stop criterion of the iterative process was defined by
the maximum amount of infill points equal to 20 and for results was considered 20 simulations, i.e., 20 repetitions
of the optimization process. First, the results was presented in a statistical way using the box plot technique. Since
the deterministic Kriging model does not consider noise information from the objective function, the optimization
process is performed considering the average of the stochastic parameter sampling.

Table 2. Mean minimum values for Function 02.

sample size EGO sEGO

target value -9,033

20 -9.5408 -9.0160

50 -9.3388 -9.0237

100 -9.2029 -

From Figure 6 it’s possible to conclude that by the EGO algorithm there was a greater dispersion of the results.
And through sEGO there was greater convergence of the result with some outliners. Now, compare the average of
the values obtained, Table 2, it’s possible to observe that the sEGO algorithm presented better performance when
reaching the target value with a much smaller sampling in contrast with the EGO algorithm that did not achieve
accuracy in the result. The conclusion is that the sEGO algorithm presented the best performance reaching the
target value.
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Foz do Iguaçu, Brazil, November 21-25, 2022



Template file for CILAMCE-2022 full-length paper (enter here with the short title of your paper)

Figure 6. Boxplot for different sample sizes when θ ∼ U(1, 1)

5 Conclusions

In this article, the objective was to compare the performance of two optimization algorithms based on the
Kriging meta-model applied to noisy objective functions. The first was EGO, a very popular algorithm used
in the optimization of deterministic problems. The second was sEGO, developed from the EGO incorporating
information from the heterogeneous variance of the noisy objective function. That said, it was possible to observe
from the results that the quality of the solutions returned by the EGO when the function presented high noise
variance was strongly affected by its inability to identify good solutions for smaller samples, since it does not
address variance information in the iterative process. For problems with low variance, incorporating information
from the same in the process had low representation, in this case, both algorithms presented good performance
for a small sample size. In general, the EGO may not be very appropriate, as it ignores noise in the observations,
assuming that samples were taken with infinite precision and the sEGO algorithm presented the best performance
with an optimal value closer to the target value for small sample sizes. The use of Kriging-based algorithms for
optimizing modeled systems through stochastic simulation, especially with heterogeneous noise, is relatively new
and has great research potential.
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