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Abstract. While the exact loading to which a structure will be subjected cannot be precisely assessed during the
design phase due to its stochastic nature, probabilistic models are useful for the rational determination of nominal
values, partial safety factors and load combination factors employed in limit state design that accurately reflects the
variability of these loads. In this paper, a simple probabilistic model describing the spatial and temporal variabilities
of live loads in buildings is presented. This model consists of a sum of a sustained load and an intermittent load
stochastic processes. Due to the lack of national data to back up the model, parameters are taken from the Joint
Committee on Structural Safety (JCSS), based on international surveys. Using this stochastic model, sample values
for live loads are generated for buildings with different occupancy types, and statistics for the fifty-year extreme and
arbitrary point-in-time distributions of live loads are derived using Monte Carlo simulations. These values are then
compared with those of Brazilian design codes ABNT NBR 6120:2019 (Design Load for Structures), and other
major international standards. The resulting statistics are also employed in a reliability-based calibration of the
partial safety factors presented in Brazilian design codes for steel (ABNT NBR 8800:2008) and concrete (ABNT
NBR 6118:2014) structures. It is shown that, with the resulting set of optimized partial safety factors, reliability
is made more uniform over different load ratios, with a smaller variation around a chosen target reliability value,
while attaining no significant economic impact when compared with the currently employed factors.
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1 Introduction

When designing a structure using a semi-probabilistic approach such as the limit states format employed
by Brazilian codes and most international design codes as well, representative values of the loads are consid-
ered. These can be the characteristic (or nominal) values, design values, reduced combination values, or reduced
serviceability values (frequent and quasi-permanent, for example).

Particularly for the case of buildings, one of the most fundamental loads to be considered is the live load
(sometimes also referred to as imposed load), which consists, according to the definition found on ASCE/SEI
7-16 [1], of all loads produced by the use and occupancy of the building that does not include construction or
environmental loads, such as wind load, snow load, rain load, earthquake load, or dead load.

Live load values are usually specified in design codes as a uniformly distributed load, sometimes also accom-
panied by a concentrated load, both depending on floor occupancy type. In Brazil, design live loads are prescribed
by design code ABNT NBR 6120:2019 [2]. This code states, in agreement with the definition given by ABNT NBR
8681:2003 [3], that the presented characteristic values “have between 25% to 35% probability of being exceeded,
in the unfavorable sense, in a period of 50 years”, but also that these values are “established by consensus”. In fact,
to the authors best knowledge, there is no study or probabilistic model to back up the claim that the recommended
characteristic values in fact correspond to the aforementioned exceedance probabilities. Instead, those values were
arrived at upon comparison with international design codes or building standards such as ASCE/SEI 7-16 [1], EN
1991-1-1:2002 [4], and ISO 2103:1986 [5].

Hence, a simple hierarchical model for the spatial modeling of time-dependent live load in buildings is pre-
sented in section 2, which consists of a sum of two stochastic processes representing the sustained and extraordinary
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parts of the loading. This model is then employed in order to derive the statistics for the arbitrary point-in-time
and the 50 and 140-year extreme distributions of live loads, and assess if the loads given in NBR 6120:2019 are
consistent with the prescribed exceedance probabilities. These statistics can be used in a wide variety of reliability
analyses. One particular application where the live load statistics play a very important role is in the reliability-
based calibration of partial safety factors employed in structural design codes. In section 3, the calibration of
Brazilian codes for steel (ABNT NBR 8800:2008 [6]) and concrete (ABNT NBR 6118:2014 [7]) structures, origi-
nally performed by Santiago et al. [8], is re-processed using the live load statistics found herein.

2 Live load model

Live loads are intrinsically stochastic in nature, with variability both in space and time. However, buildings
within the same occupancy type – such as office or residential buildings, for instance – tend to exhibit similar
behavior when it comes to this variabilities, which is why live loads are usually specified in design codes according
to the intended use of the building. Floor live loads in buildings can be decomposed in two parts with very distinct
characteristics: a sustained load and an extraordinary load. The sustained part consists of the weight of all furniture,
equipment, and working/living personnel present on a regular basis. The extraordinary load, on the other hand, is
associated with localized crowding of people and/or furniture that may lead to high-intensity loading. While the
sustained load is “on” for pretty much the entirety of the building lifetime, the extraordinary load is much more
infrequent, only happening on average once every few years, and staying “on” for relatively short periods, in the
order of a few minutes or hours.

The model employed in this study is the hierarchical model presented in Part 2 of the Probability Model Code
by the Joint Committee on Structural Safety (JCSS) [9], which, in turn, is based on a well-known model originally
proposed by Peir [10]. It represents the sustained load Q(t) as a Poisson square wave process (Fig. 1a), and the
extraordinary load P (t) as a Poisson spike process (Fig. 1b). The temporal variability of the combined process
L(t) = Q(t) + P (t) is significantly more convoluted than each of its parts (Fig. 1c), which makes finding its
maximum value within a reference period a non-trivial task.

(a) Sustained load

(b) Extraordinary load

(c) Total live load

Figure 1. Schematic time histories of typical live loads in buildings
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2.1 Sustained load

The load intensity at a location (x, y) of a given floor in a given building is represented as a stochastic field
W (x, y) that can be described as follows:

W (x, y) = m+ V + U(x, y), (1)

where m is a general mean value for the whole population of buildings within the same use category; V is a zero-
mean random variable which represents the deviation of the loading on that floor from the general mean m; and
U(x, y) is a zero-mean random field which describes the spatial variability of the load within the floor.

When designing a structure, the point intensities W (x, y) are not of practical interest. Instead, what we want
to know is the load effect S caused by the stochastic field W (x, y). Assuming linear elastic behavior, where the
superposition principle is valid, the load effect S can be written as:

S =

∫∫
A

W (x, y)I(x, y) dy dx (2)

whereW (x, y) is the load intensity, and I(x, y) is the influence surface for the desired load effect over an influence
areaA. It should be noted that the influence areaA is defined as “that floor area over which the influence surface for
structural effects is significantly different from zero” [1], which is different from the tributary area. The influence
area is usually equal to twice the tributary area for beams and four times the tributary area for columns.

For design purposes, it is of practical interest to define a uniform load intensity that would produce the same
load effect S corresponding to the original load field W (x, y) when applied to the appropriate floor area. This load
is denoted by qEUDL, where EUDL stands for “equivalent uniformly distributed load”, and can be written as:

qEUDL =

∫∫
A
W (x, y)I(x, y) dy dx∫∫

A
I(x, y) dy dx

(3)

Assuming that the statistical properties of the random field W (x, y) do not depend on the location (x, y) –
that is, W (x, y) is a homogeneous field –, the mean and standard deviation of qEUDL can be calculated as:

E[qEUDL] =

∫∫
A

E
[
W (x, y)

]
I(x, y) dy dx∫∫

A
I(x, y) dy dx

= m (4)

Var[qEUDL] =

∫∫
A

∫∫
A
I(x1, y1)I(x2, y2)Cov

[
W (x1, y1),W (x2, y2)

]
dy1 dy2 dx1 dx2[∫∫

A
I(x, y) dy dx

]2 (5)

Equation (5) depends on the autocovariance of the random field W (x, y). It is reasonable to assume that, if
the load intensity at a particular location (x1, y1) is greater than the floor average, it is likely that the load intensity
at a nearby point (x2, y2) would also be high – or, in other words, that there is a generally positive correlation to the
field W (x, y) that tends to vanish as the distance separating the points increases. Three different autocorrelation
functions for the random field W (x, y) were proposed by Hauser [11].

Data from live load surveys show that the correlation length over which the correlation is significantly differ-
ent from zero is usually around 1m to 2m. This indicates that, as long as the influence area A is not too small, a
reasonable approximation can be obtained by treating W (x, y) as a “white-noise” process, meaning that the load
intensities in two points are statistically uncorrelated if any separation between them exists. Under this assumption,
Var[qEUDL] can be conservatively bounded by:

Var[qEUDL] = σ2
V + σ2

U min

[
A0

A
, 1

]
κ (6)

where σ2
V is the variance of the random variable V ; σU is the variance of the random field U(x, y); A0 is a

reference area; and κ is a peak factor that depends on the shape of the influence surface, given by:

κ = A

∫∫
A
I2(x, y) dy dx[∫∫

A
I(x, y) dy dx

]2 (7)

Values for the peak factor κ for different load effects are given in McGuire and Cornell [12] and in the CIB
Report 116 [13] (Fig. 2). In this study, κ = 2.0 was adopted.

The arbitrary point-in-time equivalent load qEUDL is assumed to be gamma distributed, following the obser-
vations of Peir and Cornell [14] and Corotis and Doshi [15], with mean and variance given by eq. (4) and eq. (6).
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Foz do Iguaçu, Brazil, November 21-25, 2022



Stochastic live load model for buildings and its application in reliability based code calibration

Figure 2. Influence surfaces and corresponding peak factor values for different load effects. Reproduced from [13]

As for the time variability, the sustained load value is assumed to remain constant between Poisson-arriving occu-
pancy changes, when it jumps to a new (constant) load level. The mean occurrence rate of sustained load changes
is denoted by λ, so that the expected number of occupancy changes during a reference perior T is λT , and the
duration of an occupancy is exponentially distributed with mean 1/λ.

2.2 Extraordinary load

A similar model is employed for the extraordinary load, where the moments for the extraordinary EUDL
pEUDL are given by:

E[pEUDL] = mp (8)

Var[pEUDL] = σ2
U,p min

[
A0

A
, 1

]
κ (9)

where the subscript p is used to differentiate extraordinary load parameters from sustained load parameters, which
will from this point forward be denoted by a subscript q.

The extraordinary load occurrence is also assumed to be Poisson-arriving, with an occurrence rate ν and a
deterministic duration dp. According to the JCSS, the arbitrary point-in-time load intensities should be assumed
to be exponentially distributed, but herein it is assumed to be gamma (similar to the sustained load), since that is
what most other studies seem to consider.

2.3 Model parameters

Ideally, model parameters σV,q, σU,q , λ for the sustained load and σU,p, ν for the extraordinary load should
be calibrated using data from local live load surveys. Since there are no such surveys for Brazilian live loads, these
parameters were instead taken from JCSS [9], except for classroom use, where JCSS parameters were found to
be excessively conservative, and the parameters suggested by Honfi [16] were used instead. The load parameters
presented by JCSS are mostly based on multiple surveys dating from 1893 to 1976 and presented in the CIB Report
116 [13], which refers to an extensive review by Sentler [17] and the work of Chalk and Corotis [18], among others.
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2.4 Simulation

In this study, statistics for the 1-year, 50-year and 140-year extreme value distributions (L1, L50 and L140) of
the total live load EUDL were obtained via Monte Carlo simulation, according to the following steps:

1. Definition of load parameters for a given building occupancy type;
2. Numerical generation of the time intervals tq between sustained load changes, from an exponential distribu-

tion with parameter λ;
3. Numerical generation of sustained EUDL intensities corresponding to each occupancy, from a gamma dis-

tribution with moments given by eq. (4) and eq. (6);
4. Numerical generation of the arrival times tp for extraordinary loads with fixed duration dp;
5. Numerical generation of extraordinary EUDL intensities corresponding to each occurrence, from a gamma

distribution with moments given by eq. (8) and eq. (9);
6. Addition of the sustained and extraordinary EUDL day-by-day over the reference time T ;
7. Determination of the maximum total EUDL value in T ;

Steps 1 to 7 are repeated for n samples, after which the mean and variance of all the n samples are evaluated.
Herein, n = 10 000 was adopted, and the resulting L50 and L140 distributions were found to be well adjusted by
a Type I Extreme Value distribution (Gumbel). From the fitted L50 distribution, characteristic (nominal) values
can be calculated as the L50 value with 30% exceedance probability, corresponding to the median of the interval
specified in the definition given by NBR 6120:2019 [2]. This characteristic value can also be calculated as the
mode of the 140-year extreme value distribution, since the aforementioned exceedance probability corresponds to
a mean return period of 140 years. Due to space constraints, only the results for office and residential buildings
are shown in Fig. 3, in a comparison with some major international design codes. Values from NBR 6120:2019
are not shown in Fig. 3 because the Brazilian code does not allow for area-based live load reduction as these other
codes. Results for other occupancies can be found in the M.Sc. thesis of the first author [19].
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Figure 3. Simulation results for office and residential buildings

In can be seen in Fig. 3 that the results obtained using the JCSS [9] parameters seem to be slightly higher
than those indicated in the considered design codes. However, a direct comparison is inappropriate, since each of
these defines their characteristic values differently from the Brazilian codes. It can also be seen that the curves
for the 0.7 fractile of L50 and the mode of L140 are practically coincident, but the 140-year return period values
calculated from L1 are somewhat higher. This is due to the fact that annual maxima are not fully independent (as
is the case for wind loads), since the average time between sustained load changes is usually longer than 1 year.

Assuming that the total live load L(t) is an ergodic process, the statistics for its average point-in-time distri-
bution (Lapt) were also obtained via Monte Carlo simulation using a really long reference period T . The results
are mainly influenced by the sustained load parameters, since the extraordinary load occurs relatively rarely, and
are is well described by a gamma distribution. The resulting distributions for different occupancy types are shown
in 1, expressed as a function of the nominal values Ln given in NBR 6120:2019 [2]. The tributary areas AT were
chosen so that the 0.7 fractile of L50 roughly corresponds to Ln.
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Table 1. Live load statistics for average point-in-time, 1-year, 50-year and 140-year extreme distributions

Occupancy type
AT Lapt (Gamma) L1 (Gumbel) L50 (Gumbel) L140 (Gumbel)

(m2) µ c.o.v. µ c.o.v. µ c.o.v. µ c.o.v.

Office 55 0.20 0.94 0.37 0.63 0.93 0.26 1.11 0.21
Residential 70 0.20 0.75 0.36 0.67 0.93 0.22 1.09 0.18
Hotel room 110 0.21 0.27 0.54 0.25 0.95 0.14 1.05 0.13
Patient room 55 0.20 1.16 0.29 0.97 0.89 0.35 1.13 0.28
Classroom* 150 0.20 0.61 0.35 0.55 0.92 0.24 1.09 0.20

Average 0.20 0.75 0.38 0.61 0.92 0.24 1.09 0.20

* Model parameters for classrooms were taken from Honfi [16] instead of JCSS [9].

3 Reliability-based calibration of design codes

Results for the reliability-based calibration of partial safety factors of Brazilian design codes for for steel
(ABNT NBR 8800:2008) and concrete (ABNT NBR 6118:2014) structures are reported in Santiago et al. [8]. The
50-year extreme live load statistic employed by the authors, however, had a bias factor of 1.0 (µ = Ln) and a
coefficient of variation equal to 0.40. This incurred in two major problems: (1) the nominal value Ln using this
statistic corresponds to a 43% exceedance probability in 50 years, in contradiction with the definition given by
NBR 8681:2003 and NBR 6120:2019; and (2) the employed c.o.v. of 40% is significantly higher than the one
used by past studies, leading to smaller reliability indexes for some of the considered structural configurations
when compared to previous studies.

The L50 statistic obtained in this study has a smaller c.o.v., more in line with the values reported by Elling-
wood et al. [20] (µ = Ln e c.o.v. = 0.25) and Szerszen and Nowak [21] (µ = 0.93Ln e c.o.v. = 0.18), utilized
in the calibration of American design codes. Using the Lapt and L50 statistics presented in Table 1, the reliability-
based calibration was re-processed. It is basically an optimization problem which consists of finding the set of
partial safety factors that minimize the weighted sum of the squared differences between the calculated reliability
index β from a target reliability index βT over a wide variety of structural configurations and load ratios. Reliabil-
ity indexes are evaluated using the First Order Reliability Method (FORM), and the optimization problem is solved
using the Particle Swarm Optimization (PSO) algorithm. For more information on the calibration procedure, the
reader is referred Santiago et al. [8], where is is described in greater detail.

In the original calibration, Santiago et al. [8] considered the target reliability index to be βT = 3.0. Herein,
it is adopted as βT = 3.17, which corresponds to the mean reliability index for concrete structures obtained using
the live load statistics in Table 1 (the mean reliability index found for steel structures was 3.28). The results are
briefly summarized in Table 2. Subscripts D, L and W refer, respectively, to dead, live and wind load, and γc, γs,
γa1 and γa2 are partial safety factors for material strengths.

Table 2. Updated partial safety factors, following the procedure of [8] with new live load statistics

Safety factors
Before calibration Original calibration [8] New calibration*

NBR 8800:2008 [6] NBR 6118:2014 [7] βT = 3.0 βT = 3.17

γc – 1.40 1.40 1.40
γs – 1.15 1.15 1.15
γa1 1.10 – 1.10 1.10
γa2 1.35 – 1.30 1.40
γD 1.25 1.40 1.25 1.20**

γL 1.50 1.40 1.70 1.50
γW 1.40 1.40 1.65 1.50
ψL 0.50 / 0.70 / 0.80 0.50 / 0.70 / 0.80 0.35 0.45
ψW 0.60 0.60 0.30 0.35

γL · ψL
*** 0.70 / 1.05 / 1.20 0.70 / 0.98 / 1.12 0.60 0.68

γW · ψW
*** 0.84 0.84 0.50 0.53

* Rounded values, to make NBR 6118 compatible with NBR 8800.
** This coefficient is suggested to remain 1.40 when live and wind loads are zero.
*** Effective combination value for secondary action.
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Figures 4a and 4b illustrates shows the minimum and maximum reliability indexes obtained for concrete and
steel structures before and after the calibration, for live-to-dead load ratios (Ln/Dn) up to 2.0 and 5.0, respectively.
It is noticeable that the calibration procedure has the effect of reducing the dispersion of results, achieving more
uniform reliability for different design configurations.
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Figure 4. Reliability index envelope for all structure configurations in terms of Ln/Dn

The calibration results reported in Table 1 points to an increase in the partial safety factor corresponding
to the primary variable load (whether it is wind or live load) and a reduction in the secondary accompanying
load, as evidenced by the reduction of the combination factors ψL and ψW . It is also seen that the partial safety
factor for dead load can be reduced from γD = 1.40 currently adopted for concrete structures (except for the load
combination where it is the only load acting on the structure, in which case we recommend that γD is kept as 1.40),
since the variability of this kind of load is usually much smaller than for wind or live loads. Comparison with the
results of the previous calibration, which utilized a L50 statistic with a c.o.v. of 40%, shows that the calibration
results using the new live load statistics presented herein lead to a set of partial safety factors more in line with
major international design codes such as EN 1990:2002 [22] or ACI 318:19 [23].

4 Conclusions

This paper addressed the temporal and spatial variability of live loads in buildings using a hierarchical model
presented in JCSS [9]. Model parameters for both sustained and extraordinary loads were mostly taken from [9],
since there are no available survey data for Brazilian buildings. Using this model, new statistics for the average
point-in-time distribution (Lapt), as well as the 1-year (L1), 50-year (L50) and 140-year (L140) extreme value
distributions for live loads are derived. These statistics comply with the 25% to 35% exceedance probabilities in
50 years prescribed in NBR 8681:2003 and NBR 6120:2019. Particularly, the L50 statistic herein presented have
a significantly lower coefficient of variation than the corresponding statistic reported by Santiago et al. [8]. The
reliability-based calibration of Brazilian structural codes for concrete and steel structures is re-processed using
these new statistics, in order to assess the impact they have on the optimal set of partial safety factors. The results
show that more uniform reliability indexes can be achieved by increasing the partial safety factors corresponding
to the main variable load and reducing the secondary load in the combinations, and that the partial safety factor
for live loads obtained in the original calibration [8] was overestimated due to the larger coefficient of variation
considered by the authors.
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