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Abstract.
This paper presents a thermomechanical model of a saturated porous slab, which is suitable to the study of

rocks subjected to thermal exchanges with the surrounding environment of a building. This model involves linear
differential equations of stress equilibrium and transient pore pressure dissipation and its main purpose is to help
to the understanting of the bowing, which is an important phenomenon that occur when some porous rocks are
subject to temperature cycles. Moreover, an analytical solution for a steady state condition for pore pressure is
developed, which describes the situation where the generation of pressure due to cooling of a slab is compensated
by pressure dissipation caused by water loss (consolidation). This analytical solution should be useful to test future
numerical implementations of the thermoelasticity model presented herein.
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1 Introduction

The degradation of building envelope materials subjected to wheathering is a well known matter of concern
in civil construction all over the world. In particular, a phenomenon known as bowing occurs in some marble slabs
subjected to daily temperature oscilations and this degradation seems to be enhanced when the marble is saturated
[1]. Ito et al. [2] started an analytical study on thermally induced stresses in dry marble slabs subjected to periodic
temperature oscilations. Guimarães et al. [3] developed an “upper bound” estimation of pore pressure development
by adapting the solution of Ito et al. to undrained conditions. In this work, it is presented a simple solution for
dissipation of pore pressure in porous slabes subjected to a sudden temperature fall. The material is considered as
a porous linear elastic medium, in which thermal conduction is ruled by Fourier law and water flow in ruled by
Darcy’s law.

In the next section, it is presented the framework of thermoporoelasticity as it will be used in this paper. The
third section is dedicated to present the simple heat transfer solution to be used. Following that, the dissipation
solution is developed and commented.

2 Anisotropic formulation of thermoelasticity

For transverse isotropy, the z-axis is assigned as the axis of material rotational symmetry. For plane strain
state, the constitutive relations can be expressed as [4, 5]
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σxx = M11 exx +M13 ezz − α1 p− αd,1 T, (1)
σyy = M12 exx +M13 ezz − α1 p− αd,1 T, (2)
σzz = M13 exx +M33 ezz − α3 p− αd,3 T, (3)
σxz = 2M55 exz, (4)

where σij are the components of the stress tensor (tensile normal components are positive), eij are the components
of the strain tensor, Mij are the elastic constants of the drained stress-strain relationship, p is the pore water pressure
(compression is positive) and T is the temperature, which should be “gauged” for T = 0 when null strains produce
null stress. The following drained thermophysical properties may be calculated:

αd,1 = M11 αt,1 +M12 αt,1 +M13 αt,3, αd,3 = 2M13 αt,1 +M33 αt,3, (5)

where αt,1 and αt,3 are the linear thermal expansion coefficients; α1 and α3 are the anisotropic effective stress
coefficients, which may be calculated as

α1 = 1− M11 +M12 +M13

3Ks
, α2 = 1− 2M13 +M33

3Ks
, (6)

where Ks is the bulk modulus of solid phase. The last constitutive equation is useful in calculation of fluid pore
pressure (still in plane strain state),

p = M(−α1 exx − α3 ezz + ζ + βe T ), (7)

where ζ is the variation of fluid content caused by flow. For an ideal porous medium [5], one gets

βe = αβs + βu, (8)

where βs = 2αt,1+αt,3 is the volumetric thermal expansion coefficient of the solid phase and βu is the undrained
volumetric thermal expansion coefficient, which is calculated as

βu = (1− nB)βs + nBβf . (9)

Here, n is the porosity, βf is the volumetric thermal expansion coefficient of the fluids, α is the isotropic Biot
effective stress coefficient given by

α = 1− M̄

Ks
, (10)

M̄ is the “average” bulk modulus of the matrix given by

M̄ =
2M11 +M33 + 2M12 + 4M13

9
, (11)

and B is the Skempton pore pressure coefficient given by [4, 5]
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B = 1− n M̄ (Ks −Kf )

Kf

(
Ks − M̄

)
+ n M̄ (Ks −Kf )

, (12)

M (Biot modulus) is the inverse of the storage coefficient, given by [4, 5]

M =
Kf K

2
s

Kf

(
Ks − M̄

)
+ nKs (Ks −Kf )

. (13)

Equations (1) and (3) can be used to calculate exx and ezz , which read

exx = − M13

M11M33 −M2
13

σzz +
M33α1 −M13α3

M11M33 −M2
13

p+
M33αd,1 −M13αd,3

M11M33 −M2
13

T, (14)

ezz =
M11

M11M33 −M2
13

σzz +
M11α3 −M13α1

M11M33 −M2
13

p+
M11αd,3 −M13αd,1

M11M33 −M2
13

T, (15)

With the previous equations, eq. (7) can be used to calculate ζ, which reads

ζ =
α3M11 − α1M13

M11M33 −M2
13

, (σzz +A1p+AtT ) , (16)

A1 =
M33α

2
1 − 2M13α1α3 +M11α

2
3

α3M11 − α1M13
+

M11M33 −M2
13

M (α3M11 − α1M13)
, (17)

At =
M33α1αd,1 −M13α1αd,3 +M11α3αd,3 −M13α3αd,1

α3M11 − α1M13
− M11M33 −M2

13

α3M11 − α1M13
βe. (18)

According to Abousleiman et al. [4], there is a relation between the drained and the undrained moduli, which
reads

Mu
ij = Mij + αiαjM, (19)

together with (1) and (7), one can get to an undrained constitutive relation for σxx:

σxx = Mu
11exx +Mu

13ezz − α1Mζ − (α1Mβe + αd,1)T. (20)

In the case of an infinite slab with symmetry for translation in the longitudinal direction, flow will only occur
in transverse direction to the slab, which can be estimated via Darcy’s law:

qx = −k

γ

∂p

∂x
, (21)

where qx is the tranverse volumetric flux, k is the hydraulic condutivity and γ is the specific weight. The continuity
equation in this case is expressed as

∂ζ

∂t
+

∂qx
∂x

=
∂ζ

∂t
− k

γ

∂2p

∂x2
= 0. (22)

Substituting p of eq. (7) in the above equation, one gets
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∂ζ

∂t
− k

γ
M

∂2ζ

∂x2
+

k

γ
Mα1

∂2exx
∂x2

− k

γ
Mβe

∂2T

∂x2
= 0. (23)

Here, it was invoked the Navier hypothesis, which enforces
∂2ezz
∂x2

= 0 . The same hypothesis can be applied
to eq. (20); as there are no transverse loads in the present problem, σxx vanishes, which leads to

∂2exx
∂x2

=
α1M

Mu
11

∂2ζ

∂x2
+

α1Mβe + αd,1

Mu
11

∂2T

∂x2
. (24)

By substitution of this result in eq. (23), one gets

∂ζ

∂t
− c1

∂2ζ

∂x2
+ ct

∂2T

∂x2
= 0, c1 =

kM

γ

M11

Mu
11

, ct =
kM

γ

α1αd,1 −M11βe

Mu
11

, (25)

which is the equation of Biot consolidation for Mandel’s problem, with adition of the last term, which takes into
account thermal expansion. Substituion of ζ (eq. 16) in the above equation results in

(
∂

∂t
− c1

∂2

∂x2

)[
α3M11 − α1M13

M11M33 −M2
13

(σzz +A1p+AtT )

]
+ ct

∂2T

∂x2
= 0. (26)

3 Heat transfer model

In this work, for the sake of simplicity, the heat transfer within the slab will be considered only as diffusion
process, i.e., the convective process due to water flow will be neglected. This approximation, which simplifies the
solution in several ways, seem to be reasonable, as the hydraulic conductivity of the Carrara marble is very low, as
well as its porosity. The Fourier law, which governs thermal diffusion in its usual form for an homogeneus medium
in one direction (transversal), is given by

∂T

∂t
= D

∂2T

∂x2
, with D =

kt
ρc

, (27)

where kt is the thermal conductivity of the medium, ρ is its density and c is its specific heat capacity. One should
bear in mind that all these properties should be taken for the “composite” medium, encompassing both calcite and
water properties, as well as its the influence of its geometric arrangement to the heat flow.

Figure 1 presents the temperature readings of a Carrara marble slab that was used as building envelope of
Pescara Justice Court. It can be noticed that, according to Ito et al. [2], the fast temperature drawdown that took
place at 14:00 was responsible to the highest value of σyy along all that day. Studies carried by Ito [6] showed that
this peak value of σyy was also well approximated by a polynomial solution which was a linear funcion of time t
and a quadratic function of the transverse distance from the slab face (0 ≤ x ≤ L). This approximation will be
used in this work as an approximation of the temperature pattern in order to estimate the darcian flow and the pore
pressure profile in the slab.

The polynomial solution for thermal diffusion has the form

T = T0

[
2− 4

L2
x2 − 8

D

L2
t

]
, (28)

where T0 is the ”gauged” peak temperature. By substitution in (25), one gets
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Figure 1. Temperature readings and stress estimation in the slab – adapted from Ito et al. [2]

∂ζ

∂t
− c1

∂2ζ

∂x2
+ ct

8T0

L2
= 0. (29)

4 Polynomial solution for dissipation

For the same sake of simplicity, a polynomial solution is sought, bearing in mind that the “linear ramp”
of temperature drawdown is causing a “steady” linear descent, in which any different initial condition has been
dissipated. In this case, ζ will also have a linear behavior in time:

∂ζ

∂t
= czt. (30)

Substituting it in eq. (29) and taking into account an approximate symmetry in x = 0, the solution takes the
general form

ζ = cztt−
1

c1

(
czt − ct

8T0

L2

)
x2

2
+ cz0, (31)

with czt and cz0 being integration constants to be determined. By substitution in (16), one gets

σzz +A1p =
M11M33 −M2

13

α3M11 − α1M13

[
cztt−

1

c1

(
czt − ct

8T0

L2

)
x2

2
+ cz0

]
−AtT. (32)

Direct application of Navier hypothesis and symmetry for x = 0 in eq. (16), one gets that ζ must be inde-
pendent of x, i.e., it must be just a function of t. Following the polynomial character of this solution, this can be a
linear fuction

σzz +
M11α3 −M13α1

M11
p+

M11αd,3 −M13αd,1

M11
T = C0 + C1t. (33)
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By subtracting (33) from (32), one gets

A1p−
M11α3 −M13α1

M11
p = A1p−A2p

=
M11M33 −M2

13

α3M11 − α1M13

[
cztt−

1

c1

(
czt − ct

8T0

L2

)
x2

2
+ cz0

]
+(

M11αd,3 −M13αd,1

M11
−At

)
T0

[
2− 4

L2
x2 − 8D

L2
t

]
− C0 − C1t. (34)

The entire left hand side is a function of p, which is defines the boundary conditions of the present problem.
In order to produce a boundary condition constant in time, all the time-dependent terms of the right hand side
should vanish. This enforces that

czt =
α3M11 − α1M13

M11M33 −M2
13

[(
M11αd,3 −M13αd,1

M11
−At

)
T0

8D

L2
− C1

]
. (35)

By selecting only the time-independent terms of (34), one gets

A1p−A2p =
M11M33 −M2

13

α3M11 − α1M13

[
1

c1

(
ct
8T0

L2
− czt

)
x2

2
− cz0

]
+

(
M11αd,3 −M13αd,1

M11
−At

)
T0

(
2− 4

L2
x2

)
. (36)

By enforcing A1p−A2p = 0 in x = L/2, one gets

p =
1

A1 −A2

{
M11M33 −M2

13

α3M11 − α1M13

[
1

c1

(
L2

8
czt − ctT0

)]
+

(
M11αd,3 −M13αd,1

M11
−At

)
T0

}(
1− 4

L2
x2

)
.

(37)

This equation has an unknown, say czt. This can be determined by integrating eq. (33) along x interval
(−L/2, L/2). As the integral of σxx should vanish, substitution of (28) and (33) produces an identity involving
terms which are independent and terms that are dependent of t. The dependent terms produce the identity

C1 =
M11αd,3 −M13αd,1

M11
T0

8D

L2
, (38)

which may be substituted in (35) to obtain finally

czt =
α3M11 − α1M13

M11M33 −M2
13

AtT0
8D

L2
. (39)

5 Some quantitative results and discussion

The formulation presented in the previous section is now used in order to present the magnitude of pore
pressure induced in a marble slab, for the same problem presented by Guimarães et al. [3]. The same values of
D = 1.18 · 10−6 m2/s, L = 0.03 m, E = 52.4 GPa, ν = 0.16, β = 1.77 · 10−5, Ks = 130 GPa and Kf = 2.2
GPa are the same used in that work [3]. Together with hydraulic conductivity of an unwheatered Carrara marble
estimated as [7]
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k =
K γw
µ

=
10−19.5 9.8

10−6
= 3.09 · 10−13m/s, (40)

where K, γw, µ are respectively the intrinsic permeability, water specific weight and water viscosity. The
following partial results were produced:

B = 0.7775 (equation 12) M = 66.13304907 GPa (equation 13)
βe = 1.17 · 10−5 ◦C−1 (equation 8) A1 = 2.856349015 (equation 17)
A2 = 0.648992266 (equation 34) At = −59.49049361 GPa◦C−1 (equation 5)

∂T

∂t
= −0.002319321◦C· s−1 (Pescara’s data) T0 = 7.370723701◦C (Pescara’s data)

C1 = 28.45401977 GPa·s−1 (equation 38) czt = −7.0365 · 10−08 ◦C−1· s−1 (equation 39)
M11 = 55.80121704 GPa (Abousleiman et al. [4]) Mu

11 = 98.30605219 GPa (equation 19)
ct = −6.11516 · 10−12 m2 ◦C−1s−1 (equation 25) c1 = 1.18519 · 10−06 m2 s−1 (equation 25)

By putting all these numerical values in (37), one gets to a maximum of p = 1.37 MPa at x = 0. This result
is higher than the undrained maximum calculated by Guimarães et al. [3] by an order of magnitude.

The “steady” condition of temperature fall admited here may be conservative when compared to the transients
that took place in Pescara. Nevertheless, this solution, after future verifications, will be useful as an analytical
solution to be use in convergence analysis of numerical implementations of the thermomechanical model presented
here. Future works will also use most of the theoretical background presented here in order to develop an analytical
solution for Madel’s problem with periodic thermal loads.

6 Conclusions

This paper presented the main equations of porothermomechanics, which will be used in future works to
model the development of pore pressures due to thermal loads and its dissipation by transient water flow. The
simple analytical solution herein will also be useful in assessing the convergence of numerical implementations.
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