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Abstract. The generation of electrical energy from mechanical vibrations and using piezoelectric materials is an
attractive alternative due to the high density of electrical charge present in these materials. Although energy can be
harvested, the design of devices for this purpose must satisfy specific criteria, because the energy available for con-
version into electricity is low. This work suggests the robust design of beam type piezoelectric energy harvesters,
considering the presence of uncertainties in certain parameters. Thus, the study presents a finite element can-
tilever beam model and, through multiobjective optimization, designs the energy harvesting devices to maximize
the mean power and minimize the relative dispersion simultaneously. The mean and variance for the frequency
response function of the power output are estimated using polynomial chaos expansion. Results show that harvest-
ing devices with smaller length and larger masses generally lead to best nominal performance but also to higher
dispersions. Also, the dispersions can be reduced by using effective circuit resistances smaller than the nominal
values. With the increase of uncertainties in the parameters of the devices, better performances and decrease in the
response variability are achieved by using other design variables in the optimization.
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1 Introduction

As energy consumption has increased in the last few years, alternative solutions to this problem have emerged.
From this perspective, energy can be extracted from wind, thermal, chemical and mechanical sources, for example
[1]. Thus, the energy harvested from the vibration in dynamic systems is a motivating alternative. With the use of
piezoelectric sensors, the mechanical energy caused by vibrations is converted into electricity. To maximize the
energy harvested, it is important that the devices to be properly designed. Figure 1 shows a device with a seismic
massmb, which length is lb, electric resistanceRc and beam lengths lv and lb. By applying a harmonic input w0(t)
to the base of the device, vibrations will occur, allowing the calculation of power through Rc. This value will be
maximized when the input and device frequencies are tuned, which is achieved by modifying mb.

Since the amount of energy harvested is generally small, it is important to use optimization methods to design
the devices. However, parameters or some design conditions of the devices may present measurement uncertainties
or variability [2, 3]. In this case, it is essential to consider the occurrence of uncertainties in the optimization.
Optimizations performed in these conditions can be categorized as reliability-based optimizations or robust design
optimizations [4]. Concerning the probability of failure and the expected values in the design solutions, we have
the first case, while projects that are less sensitive to changes in parameters, loads or some cause are related to the
second case.

For robust designs, one way to measure sensitivity is to estimate the mean and variance of the response,
allowing the computation of relative dispersion. The response in the case of energy harvesting devices can be the
Frequency Response Function (FRF) of output power. However, estimating the mean and variance or statistical
moments of a function becomes a challenge when computational cost is a requirement. Monte Carlo Simulations
(MCS) are often used for this purpose, but the computational effort is usually high. Consequently, other methods,
such as Taylor’s first-order series approximations, polynomial chaos and Karhunen–Loève expansions, as well as
metamodels, are reasons to study in some works [4, 5].

Multiobjective optimization algorithms are important tools in robust designs because they can simultaneously
optimize mean and variance or relative dispersion. For energy harvesting devices, an attractive strategy is to
maximize the mean and minimize the relative dispersion of the response. Heuristic algorithms such as the Non-
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Foz do Iguaçu, Brazil, November 21-25, 2022



Robust design of piezoelectric energy harvesters using polynomial chaos expansions and multi-objective optimization

dominated Sorting Genetic Algorithm (NSGA-II) can be used for this[6]. In multiobjective optimization, multiple
solutions are found and the values of their functions are disposed in a curve known as the Pareto front[7]. A
particular goal cannot be improved without prejudicing another goal on the Pareto front. The analyst must use
certain pre-established criteria to determine the best solution.

In this work, energy harvesting devices will be designed to extract the maximum amount of energy while
simultaneously minimizing relative dispersion. The model used is based on finite elements with seismic mass at
the end. By applying the NSGA-II method, the multiobjective optimization will be executed, with evaluation of
the statistical moments using the polynomial chaos expansion. It is intended to compare three different scenarios
for a set of designed devices. In the initial phase, devices with more design variables are designed. Subsequently,
the number of design variables decreases, while the uncertain parameters for the new scenario increase. Finally,
the most relevant variables and parameters are used in the design of new devices to conclude the last scenario.
Through analysis using error bar and Pareto front, conclusions can be reported on the impact of considering more
or less design variables or uncertain parameters on the results.
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Rc

lv lbw0(t)
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Figure 1. Typical model of energy harvesting devices
based on resonating cantilever beams.
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Figure 2. Schematic representation of the energy
harvesting resonant device with imperfect clamp.

2 Finite element model for energy harvesting

The finite element model proposed here is based on the work of [8]. With this, a sandwich model was
considered for the beam, with two external layers modeled according to the Euler-Bernoulli theory and an internal
layer based on Timoshenko’s criterion. The piezoelectric material is considered to be perfectly covered with
electrodes and composed of orthotropic materials. Figure 2 shows the model to be studied, with an imperfect
clamp, simulated by linear springs kw and torsion springs kθ. The piezoelectric sensor that is dp from the clamp is
coupled to the beam through an adhesive layer of height hc and also connected to an electrical resistance Rc. The
following geometric parameters are considered: length of beam lv and sensor lp, height of beam hv and sensor
hp, length and height of seismic mass lb and hb, respectively. Through a harmonic input w0(t) = w̃0e

iωt, the
device will vibrate, allowing to calculate the power generated through the electrical resistance Rc. The equations
of motion are described as:

Mrrür + Krrur − K̄meqc = −Mrwẅ0(t), (1)

Rcq̇c − K̄t
meur + K̄eqc = 0, (2)

where Mrr, Krr, K̄me e K̄e are matrices of mass and mechanical, piezoelectric and dielectric stiffnesses. The
vectors of relative mechanical displacement and induced electrical charge on the piezoelectric sensor are repre-
sented by ur and qc, respectively, while Mrw is a column vector with elements of mass. The preceding equations
will be modified for modal form by considering ur ≈ φαr, where φ is obtained through the resolution of the
eigenvalue problem [−ω2Mrr + Krr]φ = 0. By incrementing the modal damping matrix Λ, we have (1) and (2)
written as:

(−Iω2 + j2ωΛΩ + Ω2)α̃r −Kpq̃c = φtMrw(−ω2w̃0), (3)

(jωRc + K̄e)q̃c −Kt
pα̃r = 0, (4)

where I = φtMrrφ, Ω2 = φtKrrφ e Kp = φtKme. α̃r and q̃c are the modal displacements and circuit electric
charges, respectively. The FRF of voltage output will be found by establishing the relationship between resistance
and electric current, by Vc = Rcic, where ic = q̇c. Therefore, the FRF of output voltage per base acceleration unit
will be:

GV a0(ω) = jωRcK
t
pD
−1φtMrw, (5)
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where D = (jωRc + K̄e)(−Iω2 + j2ωΛΩ + Ω2)−KpK
t
p.

Similarly, one can find the power dissipated in the electrical resistance by setting P = V 2
c /Rc. As a conse-

quence, the FRF of power output per square acceleration input GPẅ0
(ω) is written as follows:

GPa0(ω) = (GV a0(ω))2/Rc. (6)

The equation (6) will be used for the study of energy harvesting, aiming to optimize the devices. Thus, the
strategy will be to maximize its mean value and minimize its dispersion simultaneously. Thus, it will be possible
to perform all uncertainty analyses and check the performance of the devices.

3 Estimation of mean and variance

Given a computational modelM(X), depending on a random vectorX , the response can be expressed using
the polynomial chaos, as follows:

Y ≡M(X) ≈
∑
%∈A

c%Ψ%(X). (7)

In this case, the response was approximated by a sum of terms consisting of deterministic coefficients c% and
bases Ψ%(X) or multivariate orthonormal polynomials, which are associated with multi-indices %. Details on how
to find the multi-indices defined as % = (%1, %2, · · · , %M ), %i ∈ N, with M random variables, can be found in [9].
The bases Ψ%(X) are formed by the multiplication of univariate polynomials dependent on the category of the
probability distribution of the random vectorX . For example, these polynomials are from Hermite, Legendre, and
Laguerre for the corresponding random variables with Gaussian, Uniform, and Gamma probability distributions.
In addition, random variables have to be standardized for the calculation of polynomial bases.

The set A = AM,p is established as AM,p = {% ∈ NM : ‖%‖1 ≤ p}, where p is the degree of the chosen
polynomial, and ‖%‖1 is the sum of the terms in the list % = (%1, %2, · · · , %M ). The cardinality of this set will
allow to define the number and the bases of the polynomial, and details of how to calculate it can be found [9].
The coefficients can be determined by performing the least squares minimization by finding the argument that
minimizes the mean squared error between the difference of the computational model and the one estimated with
the truncated polynomial. In this case, a sample set of points X = {x(i), i = 1, · · · , n} can be obtained using
Monte Carlo method, Latin Hypercube Sampling, Sobol or Halton sequence, for example. The model response
will be computed as follows:

Y = {y(1) =M(x(1)), · · · ,y(n) =M(x(n))}T . (8)

The base of polynomials is used to assemble the following set:

A = {Aij
def
= Ψj(x

(i)), i = 1, 2, · · · , n, j = 1, 2, · · · , card(A)}. (9)

where card(A) is the cardinality of set A. Based on this description, the coefficients will be calculated in the
following manner:

ĉ = (ATA)−1ATY. (10)

The mean and variance is easily found after determining the coefficients as follows:

µŶ = E[Ŷ ] = E[
∑
%∈A

ĉ%Ψ%(X)] = ĉ0, (11)

σ2
Ŷ

def
= Var[Ŷ ] = E

[
(Ŷ − ĉ0)2

]
=

∑
%∈A
%6=0

ĉ2%. (12)

By means of (11) and (12), the mean and relative dispersion of the FRF of power output given by (6) are
estimated for subsequent optimization with the NSGA-II method.

4 Mutiobjective optimization with NSGA-II

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is a method based on the classical genetic algo-
rithm to solve problems with different objective functions simultaneously. For this reason, a population of points in
each run of the algorithm is chosen in order to converge towards the Pareto front. In the convergence procedure, the
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method seeks multiple non-dominated solutions assigning fitness to the population members and trying to ensure
the diversity of points in the final solutions [6].

In the genetic algorithm (GA), the convergence process is divided into stages of reproduction, crossover and
mutation based on biological evolution concepts [10]. The variables are manipulated using individuals and a fitness
function is evaluated to select the best individuals. By means of probabilistic concepts, the best individuals are
selected at the reproduction stage and copies are created to form the mating pool. After this stage, part of the
population from the mating pool is chosen and the crossover operator is applied by combining portions of the
individuals aiming at producing offspring individuals with better fitness (objective function) values. Finally, the
mutation operator is implemented by modifying certain characteristics (properties) of the individuals according
to a specified probability. These steps are repeated for a number of generations (iterations) to find the optimal
characteristics (design variables) that minimize or maximize a specific objective function.

The stages presented in the genetic algorithm are used in the NSGA-II to find non-dominated solutions and to
ensure the diversity in the population. Thus, the first procedure is to rank the individuals by dividing the solutions
in fronts or ranks, which are chosen according to the dominance concept. For instance, a hypothetical population
can divided in rank 1, rank 2 and rank 3 so that the individuals of rank1 are closer to the optimum Pareto front and
should be preferred in the non-dominance procedure. Then, for individuals in the same rank, the diversity of the
population is preserved by considering solutions in a less crowded area with the help of an operator that measures
the crowding distance.

The initial population with N individuals in NSGA-II is ranked and the operators of reproduction, crossover
and mutation are applied to create an offspring population. The new population, which consists of 2N individuals,
are sorted according to the dominance concept in the best ranks. Also, the crowding distance operator is applied
to the individuals in the same rank. Hence, the population is truncated and the best solutions of N individuals are
separated, ending the iteration. This process is repeated in order to find the Pareto-optimal solutions based on the
number of iterations determined by the end-user.

5 Design of robust energy harvesting devices

The design of energy harvesting devices was executed for three different scenarios. The first scenario con-
sisted in the use of a higher number of design variables, the second in more uncertain parameters and the third was
composed of the most important variables and parameters in the previous cases. To perform the optimization, some
data and parameter values of the devices were defined based on Fig. 2 and in an experimental setup validated in the
work of [11]. Some geometric parameters of the validated prototype are: distance between piezoelectric patch and
clamp dp = 1.1 mm, piezoelectric patch thickness hp = 0.13 mm, substrate thickness hv = 1 mm, adhesive layer
thickness ha = 0.08 mm, substrate length lv = 74.7 mm, piezoelectric patch length lp = 73.6 mm and considering
also all parts with 12.8 mm of width. The total effective translation and rotation inertias are estimated as 9.2 g and
0.8 kg mm2, respectively, with length and height of lb = hb = 12.8 mm. The following piezoelectric coefficients
for a sensor PZT-5A of density 7850 kg m−3 are: elastic stiffness constant c̄E11 = 66.3 GPa, piezoelectric constant
ē31 = 13.3 C/m2 and dielectric constant ε̄ε33 = 12.3 nF/m. The Epoxy-based adhesive layer has Young’s modulus
2 GPa and density 1126 kg m−3.

In the first scenario, the corresponding vectors of design variables and uncertain parameters were defined as
xd = {lv, Rc, hp, lp/lv, dp/(lv − lp)} and x = {kw, kθ, ζ, Rc} according to the Fig. 2. For the design variables,
if the values of lv , lp/lv and dp/(lv − lp) are given, lp and dp are determined. Besides the stiffness of the clamp,
kw and kθ, and electrical resistance Rc, the effective damping of the device ζ is also an uncertain parameter. For
all these parameters, the Gamma probability distribution is chosen. Given the above, the FRF presented by (6) is
written in terms of xd, x and frequency ω, as follows:

Y (xd,x, ω) = GPa0(xd,x, ω). (13)

The mean value and variance of (13) are calculated based on (11) and (12). Thus, optimization via NSGA-II is
applied to find xd, maximizing the mean and minimizing the relative dispersion of (13). The height of the seismic
mass hb is found by internal optimization, tuning the input and peak vibration frequencies. For all optimizations, a
polynomial chaos expansion of degree 3 (PCE-3) was chosen with estimation of the coefficients via Monte Carlo
with Latin Hypercube Sampling (MCLHS).

The mean values considered for the uncertain parameters are kw = 50 kN/m, kθ = 0.3 kNm/rad and
ζ = 1.1%, which are also determined in [11]. The relative tolerance for each variable kw, kθ, ζ and Rc was
assumed to be 90%, 90%, 10% and 30%, respectively, and equal to three times the relative dispersion. The
upper and lower bounds for design variables are equal to xLp = {65 mm, 20 kΩ, 0.13 mm, 0.8, 0} and
xUp = {85 mm, 400 kΩ, 0.25 mm, 0.97, 0}. The input frequency was chosen at 40 Hz, which is very close
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to the vibration frequency of the device validated in the cited work. Subsequently, the NSGA-II method was per-
formed with 30 individuals, 150 generations with 70% and 30% of crossover and mutation rates, respectively, to
maximize the mean and minimize the dispersion of (13). For this purpose, PCE-3 with 150 samples via MCLHS
was used to determine the coefficients in this scenario.

In the second scenario, the vector of uncertain parameters was increased to x = {kw, kθ, ζ, Rc, hc, Ec},
while the vector of design variables xd was composed only of lv and Rc. The addition was the height of the
adhesive layer hc and the corresponding modulus of elasticity Ec in the vector of uncertain parameters. For
defining which of these uncertain parameters most influence the response hc = 0.08 mm (δhc = 10%) and
Ec = 2.0 GPa (δEc = 50/3%) were defined. Based on the aforementioned experimental design, estimates of
mean and relative dispersion with a large number of samples were found using the Monte Carlo method. This
allowed to set reference values for the mean and dispersion of the model response equal to µref = 41, 964 mW/g2

and δref = σref/µref = 10, 155%. From this, one uncertain parameter was excluded at a time and the mean and
dispersion values of the response were verified, being able to compare with the references. For example, µk̄w and
δk̄w are the mean and dispersion of response by removing kw, while µk̄θ and δk̄θ is the same case by removing kθ.
The results, shown in Tab. 1, indicate that the electrical resistance Rc and the elastic modulus of the adhesive layer
Ec are the less influential, according to their corresponding relative dispersion errors er. Thus, these parameters
uncertainties were removed from the subsequent analyses by setting their values to the corresponding nominal
values.

Table 1. Output power mean µ and relative dispersion δ estimation removing one uncertain variable at a time.

[mW/g2] er(%) [%] er(%)

µk̄w 42.52 1.3 δk̄w 8.66 14.7
µk̄θ 42.63 1.6 δk̄θ 8.23 18.9
µζ̄ 41.88 0.2 δζ̄ 9.48 6.6
µR̄c 42.03 0.1 δR̄c 10.04 1.0
µĒc 43.38 0.3 δĒc 9.76 3.8
µh̄c 42.09 3.3 δh̄c 7.50 26.1

The limits 65 mm ≤ lv ≤ 85 mm and 20 kΩ ≤ Rc ≤ 400 kΩ were defined and the NSGA-II method applied
30 individuals and 150 generations, maximizing the mean and minimizing the dispersion of (13) in 2nd scenario.
In this case, the PCE-3 with 300 samples was used to estimate the coefficients with MCLHS.

Hence, based on the two previous scenarios, the most important design variables were chosen to obtain other
devices that could potentially lead to better results despite the increased uncertainties. In this scenario, the position
of the piezoelectric layer was considered near the clamp since dp = 0 for all cases. That is why the vector of design
variables was stipulated as xd = {lv, Rc, hp, lp/lc}. For the uncertain parameters, only those with more influence
on the response were used in the uncertain vector, according to the previous section, i.e., x = {kw, kθ, ζ, hc}. The
boundary conditions for the design variables remain the same as the previous ones, as well as the mean values and
dispersions for the uncertain parameters. The optimization procedure was similar to that of the previous sections,
choosing the PCE-3 with NSGA-II, using 50 individuals and 300 generations. The number of samples to determine
the coefficients in PCE-3 was similar to the second scenario.

6 Comparison between the different designed devices

Succinctly, the three scenarios presented in before sections are analyzed in this results section, aiming to
choose different energy harvesting devices. Scenario 1 focus on design variables, scenario 2 focus on uncertain
parameters and scenario 3 focus on the most influential variables and parameters. It is intended to present the
devices of scenarios 1, 2 and 3 in a unique Pareto front and another of error bars, evaluating performance issues,
robustness and probability that one device will be better than another.

Particularly, for scenario 3, in which the most influential variables and parameters are considered, a more
detailed analysis is presented in Tab. 2. These results are from a few devices only, after the convergence of the
solutions in blue to the Pareto front shown in Fig. 3. It is possible to notice from the table that better mean
performances were achieved with devices with shorter beams lengths, larger tip masses and thicker piezoelectric
layers. On the contrary, longer beams, smaller tip masses and thinner piezoelectric layers lead to nominally worse
but more robust performances. Also, reducing the effective resistance may increase robustness without much loss
in mean performance. For example, there was an approximate reduction of 5.7% in the mean, while the dispersion
was reduced by approximately 39%, evaluating the 2nd device in relation to the 1st device, decreasing mainly the
electrical resistance .
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Figure 3 shows the Pareto fronts for scenario 1, scenario 2 and scenario 3. An interesting analysis on these
fronts concerns the dominance criterion in the case of better performance (higher mean) and lower relative disper-
sion. Although the points in Fig. 3 refer to different problems, a device-by-device dominance analysis between the
other fronts can help in deducing some conclusions. On Pareto fronts, devices 1 to 11 are arranged in descending
order of power; device 1 has the highest mean power and device 11 the lowest. For scenario 3, the green marks are
presented to show the smoothness of the front between devices 1 and 2.

Table 2. Devices optimized for design variables lv , Rc, hp and lp/lc and uncertain kw, kθ, ζ, hc.

Device
lv

(mm)
hb

(mm)
Rc

(kΩ)
hp

(mm)
lp
lv

µY

mW/g2
δY
(%)

#1 65.0 27.2 210.4 0.25 1.00 75.6 11.7
#2 65.0 26.5 120.0 0.25 0.90 71.5 8.4
#3 65.0 24.2 96.2 0.22 0.80 66.7 7.7
#4 66.1 22.1 93.2 0.19 0.81 63.1 7.6
#5 66.0 19.4 69.1 0.15 0.80 58.1 7.2
#6 68.1 18.3 66.8 0.15 0.80 55.7 7.1
#7 69.8 16.0 53.4 0.13 0.80 50.8 6.8
#8 73.8 14.2 53.7 0.14 0.80 46.6 6.6
#9 77.0 12.2 52.0 0.13 0.80 41.8 6.4

#10 82.3 10.1 48.7 0.14 0.80 36.9 6.2
#11 85.0 8.9 47.7 0.13 0.80 33.9 6.1
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Figure 4. Comparison of different devices designed
using error bars

Figure 4 represents the error bars of devices, with a tolerance of 3σ. The nominally best device is not the
best choice based on a worst-case scenario due to its worse robustness. For example, the best choice considering a
worst-case would be device 2 in scenario 3, since its lower bound for the power output is the highest. But, notice
that devices 3 and 4 may also be more interesting than device 1. From figures 3 and 4 is possible to observe that
the devices of scenario 1, without uncertainty in the adhesive layer, are more likely to be better than the others.
Therefore, the devices in scenario 2, without adding other design variables, tend to be worse or probabilistically
have a lower power generated than the other cases. The devices of scenario 3 behave in an intermediate manner to
the previous scenarios. From this, it is clear the importance of considering a reasonable amount of design variables
in the optimization, and the effect of uncertainty in the clamp and the adhesive layer, given that disregarding
uncertainties can lead to overestimated results. Regarding choosing one device or another, a subjective criteria will
base the decision-making, depending on the conditions and feasibility that the analyst will have to assemble the
prototype. Based on the analysis, a better strategy can be taken, from the choice of beam length, chosen seismic
mass, placement of the piezoelectric insert, care with its adhesive layer and fixing of the device in the clamp.

7 Conclusions

This work presented the design of robust energy harvesting devices using multiobjective optimization via
NSGA-II with polynomial chaos expansion to estimate statistical moments. Different scenarios were presented to
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show how design variables and uncertain parameters affect the response of designed devices. With the increase
of uncertainties in the parameters, it is important to consider a reasonable amount of design variables, so that the
final devices have better performance and robustness. Furthermore, devices with shorter beam lengths and higher
seismic mass showed better mean performance, while those with larger beams and smaller seismic mass were more
robust. Finally, electrical resistances with values lower than the optimum lead to more robust devices, although the
mean power may decrease slightly.
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