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Abstract. The present work is dedicated to the numerical simulation of Fluid-Structure Interaction (FSI) 

problems involving floating bodies subjected to the action of free-surface flows, where the structure may or may 

not be anchored through mooring cables. The numerical model proposed here may be utilized in several practical 

applications, such as: ships hydro-aerodynamics, stability of oil extraction platforms, efficiency of wave energy 

converters, stability of floating bridges, floating houses and buildings. In the present model, the fluid equations 

are discretized using the Characteristic-Based Split (CBS) method in the context of the Finite Element Method 

(FEM). For the treatment of multiphase free-surface flows, the Level Set Method is used, where the fluid is 

considered as a biphasic medium. The structure is kinematically described using a rigid body approach and the 

mooring cable is modeled using an elastic material with geometric nonlinearity and the Nodal Position Finite 

Element Method (NPFEM). The system of equations of motion is discretized in time using the implicit 

Newmark and α-Generalized methods. Problems involving floating bodies with and without anchoring are 

simulated to demonstrate the applicability and accuracy of the proposed numerical model. 

Keywords: Floating Structures; Fluid-Structure Interaction; Free-Surface Flows; Cable Dynamics. 

1  Introduction 

With the advances observed in the last decades in the technology of materials and construction methods, 

the so-called floating bodies have been increasingly used in different areas of Engineering. From vessels for the 

transport of cargo and passengers, through oil extraction platforms, to buildings, bridges and ports. For an 

adequate evaluation of the behavior of these structures, experimental and field studies are usually necessary, 

which unfortunately have high costs. An economical alternative would be the use of numerical simulation 

through a model that takes into account the interactions existing between the floating body and the fluid flows 

that surround it, including the action of wind, waves and water currents, in addition to the anchoring and 

foundation structures and their interaction with the water and marine soil, where the anchoring system is fixed. 

This work aims at the development of numerical FSI tools for the analysis of bodies subject to the action of 

free surface flows. The main objective is to obtain a coupling model for future studies on the behavior of floating 

bodies subjected to simultaneous actions of wind and interaction of the body with the water, which may or may 

not be anchored through mooring cables. 

The flow equations are discretized using the CBS method considering a semi-implicit scheme. For the 

turbulence treatment, it’s employed the Large Eddy Simulation (LES) methodology, using the classical and 

dynamic Smagorinsky models for scales below mesh resolution. For the spatial discretization of the domain, the 

FEM is employed using linear tetrahedral elements. For the treatment of problems involving free surface flows, 

the Level Set method is implemented, considering the flow as a two-phase fluid medium (air and water). For the 

analysis of flows in the presence of moving bodies, an Arbitrary Lagrangian-Eulerian (ALE) formulation is used 

to describe the motion of fluid particles, with a mesh movement scheme proposed and implemented previously 

by Teixeira [1]. The solid body is treated in this work using a rigid body approach, considering 6 degrees of 

freedom. The temporal discretization is performed using the implicit Newmark and α-Generalized methods. For 
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the analysis of FSI problems, the explicit partitioned model is used. The numerical simulation of anchor cables is 

performed here using the NPFEM, working with positions as variables, rather than displacements. A special 

coupling scheme between cable rigid body is utilized in this work, which is based on the work by Sun et al. [2]. 

2  Formulation 

2.1 Flow analysis and free surface modeling 

In the present model, the flow is considered incompressible, consisting of a Newtonian fluid under 

isothermal condition and without mass or energy transport. Therefore, the Navier-Stokes equations and the mass 

balance form the system of flow equations. The Navier-Stokes equations are expressed using orthogonal 

Cartesian coordinates and arbitrary Lagrangian-Eulerian (ALE) kinematic description, i.e.: 
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where ρf is the specific mass of the fluid, vi are the components of the flow velocity vector v, wj are the 

components of the mesh velocity vector w, t denotes time, xi are the components of the position vector x along 

the coordinate axes xi, gi are the components of the acceleration vector of gravity g, p is the thermodynamic 

pressure, δij are the Kronecker delta components and ν is the kinematic viscosity coefficient. 

The mass conservation equation can be expressed, considering an incompressible fluid, by the equation 

below: 
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For the free-surface flows, the Level Set method was adopted, where a signed distance function represented 

by the scalar φ is used, in such a way that the separation interface between fluids is located at positions where φ 

= 0. In this way, one of the fluids assumes values φ < 0 and the second takes on values φ > 0. As an illustration, 

Fig. 1 shows an example involving rising bubbles in a fluid. The total area Ω is filled by a liquid region (where φ 

> 0 was defined) and several gaseous regions (φ < 0), with the interface (φ = 0) represented by the lines ΓF 

(Sussman et al. [3]). The equation describing the evolution of φ over time is given by (Sussman et al. [3]): 

 

Figure 1. Level Set function to identify rising gas bubbles in a fluid 

 ( )0 1,2, 3 .

j

jv j
t x

∂ ∂
+ = =

∂ ∂

φ φ
  (3) 

The fluid physical properties are then defined as functions of φ, as shown in Eq. (4), while ρ1 and ρ2 are the 

fluid densities corresponding to fluids 1 and 2, respectively, and H (φ) is a “smoothed” Heaviside function, ε is 

the half-thickness of the transition zone, normally defined as LS xε α .∆= , where ∆x is the characteristic 

dimension of an element in the interface region and LSα  is a model parameter with values varying between 1 

and 2.  
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The numerical solution of  Eq. 4 does not guarantee that φ will remain as a distance function (i.e. 1φ∇ =
), thus a reinitialization procedure is necessary to ensure this condition (see Sussman et al. [4]). The flow 

problem is resolved here numerically using a semi-implicit CBS scheme in the context of the FEM, where linear 

tetrahedral elements are adopted for spatial discretization. 

2.2 Cable analysis: NP-FEM formulation 

Initially, consider the two-node straight cable element in a three-dimensional space, shown in Fig. 2. The 

element geometry is described by its nodal coordinates (Xi, Yi, Zi) (i=1, 2) in a global coordinate system OXYZ 

and (xi, yi, zi) (i=1, 2) in local coordinates x, y and z, where the x-axis is defined along the cable, y- and z-axes are 

perpendicular to the x-axis, respectively (Sun et al. [2]). 

 

Figure 2. Straight cable element with two knots under rigid body motion 

The position, velocity and acceleration of an arbitrary point along the cable element can be expressed in 

terms of element shape functions and the corresponding nodal values, in the form: 
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where R = {X, Y, Z}
T
, v = {vx, vy, vz}

T
 and a = {ax, ay, az}

T
 are the position, velocity and acceleration 

vectors of an arbitrary point in the global coordinate system, respectively, Xe = {X1, Y1, Z1, X2, Y2, Z2}
T
 is the 

global nodal coordinates at the current time, N is the element shape function matrix and dots denote time 

derivatives, respectively (Sun et al. [2]). In a total lagrangian description, deformation of the cable element is 

defined by u = x – x0, being x0 and x the coordinates of an arbitrary point along the element before and after 

deformation, respectively. The Green-Lagrange strain component εx at element level is defined as follows, where 

L and L0 are the length of the deformed and undeformed element (Zhu [5]). 
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2.3 Fluid-Structure Interaction 

The floating body is modeled as a rigid body with six degrees of freedom, defined by the position of its 

center of gravity (CG), described by (Xb, Yb, Zb) in the global coordinate system, and also by its orientation, 

using Euler angles (θx – roll, θy – pitch, θz – yaw) in a body-fixed local coordinate system (x, y, z) with the origin 
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at the body CG, as shown in Fig. 3. The transformation order from the global to the local coordinate systems is 

defined as yaw, pitch and roll (Sun et al. [2]). A massless rigid cable element is used to link the moored body CG 

to the end of the cable, as shown in the figure. 

 

Figure 3. Schematic view of loads and coordinate systems of the moored body 

The coupling of the fluid-cable-structure system can be performed by the following equation, at global 

level: 
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where β and γ are Rayleigh damping parameters, XC is a 3n-dimension vector containing all the nodal 

coordinates of cable, n is total number of cable nodes, Xb and θθθθ are 3-dimension vectors containing the floating 

body CG position and rotation angles, respectively. Fc is the total external load vector acting on the cable. KS, 

M
S

 and C
S

 are the equivalent stiffness, mass and damping matrices (already with fluid contributions) related 

to the the floating body and SQ  is the equivalent load vector, containing forces and moments generated by the 

fluid in addition to other forces and moments caused by the interaction between floating body and cable. Mc is 

the assembled global mass matrix of cable and Mb the mass matrix of the floating body. Similarly, Kc, is the 

assembled global stiffness matrix of cable. The stiffness sub-matrices associated with the rigid cable element, 

Kr1, Kr2 and Kcr, and the inertia tensor ɶI are constructed as (Sun et al. [2]) follows, being (Ixx, Iyy, Izz, Ixy, Iyz, Izx) 

the components of the inertia tensor, evaluated at its CG at local coordinates. Finally, for the fluid-structure 

interaction, a conventional partitioned coupling scheme is used. 
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3  Applications 

3.1 Wave Packet Interacting with a Floating Body 

Proposed by Hadžić et al. [6], the present problem studies the interaction of a floating body subject to a 

wave packet. Experimental results, conducted at the Technical University of Berlin, were obtained for a 

rectangular prism, 10 cm long, 5 cm high and 29 cm thick, with a density relative to water of 0.68 (Bouscasse et 
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al. [7]). Figure 4 presents a general scheme for the problem. 

From Fig. 4, the flap-type wave-maker can be seen on the left edge. There is a distance of 2.11 m between 

the wavemaker and the floating body. The body has a mass of 0.986 kg and a moment of inertia of 1.4x10
-3

 

kg.m². Given the large thickness of the body, the problem can be treated using a two-dimensional approach, 

using then three degrees of freedom. Also, Fig. 4 shows the time history of the flap wavemaker angle used to 

generate the wave packet. Its numerical representation in this work is given using velocity boundary conditions. 

  

Figure 4. Wave packet interacting with floating body, general scheme (left) and time history of the wavemaker 

flap angle (right) 

For the numerical simulation, a mesh of 528,039 tetrahedral elements and 176,634 nodes distributed in a 

non-linear manner was used. The smallest element dimension found is 1.82x10
-3

 m, located close to the fluid-

structure interface. The boundary conditions used are free-slip walls on the right and bottom edges. The top edge 

has only zero pressure and the left edge has the velocities components X and Y prescribed in order to generate the 

wave packet for heights up to 0.6 m. From the height of 0.6 m, velocities components X and Y are imposed null. 

Figure 5 presents the results obtained for heave (translation in Y) and roll (rotation in Z) of the floating 

body over time. Note that the results are similar to the experimental and numerical references, despite the 

numerical dissipation effect inherent to the Level Set method. For heave, it is noted that even at advanced time 

instants, such as t = 7.3 s, the response of the present work was very similar (relative error of 0.2%) to the 

experimental results of Hadžić et al. [6]; at t = 7.7 s, the results were closer to those obtained by Bouscasse et al. 

[7], with a relative error of 7.78%. For roll, it is observed that for the time instants t = 7.5 s and 7.9 s the results 

are closer to the results of Hadžić et al. [6], with relative errors of 8.98% and 12%, respectively. Figure 6 

presents free surface configurations obtained here for some time instants during the present simulation. 

 

Figure 5. Time histories related to heave and roll motions, wave packet interacting with floating body 

 

(continues on next page) 
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Figure 6. Free surface configurations over time, wave packet interacting with floating body 

3.2 Floating body with mooring 

Initially proposed by Gunn et al. [8], this problem presents a spherical buoy anchored by a vertical cable, as 

shown in Fig. 7. The buoy is originally submerged by 15 mm (relative to its top) and then released, floating 

vertically until it reaches a state of equilibrium at rest. 

The sphere has a mass of 1.745 kg and a radius of 101.5 mm. The buoy is made from a hollow sphere with 

high density expanded polystyrene (density of 29.5 kg m
-3

) with 40 mm thickness (Gunn et al. [8]). To ensure 

that the center of mass is located below the centroid (thus ensuring a stable sitting orientation in the water) a 38 

mm thick mild steel disk with a radius of 40 mm was placed in the lower half of the buoy, which lowered the 

center of mass 27 mm in relation to the centroid (see Gunn et al. [8] for additional information). The moments of 

inertia Ixx, Iyy, Izz are 1.7352 kg m², 1.7764 kg m² and 1.7352 kg m², respectively. 

The anchor cable has a diameter of 1 mm. In the experimental study, a spring was used to represent the 

stiffness of the mooring cable. To avoid damping in its expansion and contraction movements, the spring was 

placed out of the water, with stiffness of 30.88 N m
-1

, which was numerically simulated in this work by choosing 

an appropriate modulus of elasticity for the cable. 

For the numerical model, a computational domain with 1 m length, 1 m width and 1.6 m tall was adopted, 

which is based on the numerical model utilized by Gunn et al. [8]. To avoid the effect of bouncing waves, a 

sponge layer of 0.15 m length Ls and damping intensity parameter αs = 400 was used. Two meshes were utilized 

in this study: Mesh 1 – 1,342,130 elements and 240,423 nodes, with a smallest element length of 2 x 10
-3

 m; 

Mesh 2 – 816,516 elements and 142,047 nodes, with a smallest element length of 1 x 10
-2

 m. 

 

Figure 7. General scheme, floating buoy with mooring 

Figure 8 presents results referring to the cable positions over time, which are compared with experimental 

results obtained by Gunn et al. [8]. Note the proximity between both predictions, although the result obtained 

with the model proposed in this work shows a lower damping over time. For Mesh 1, an average relative error of 

2.5% was observed relative to the reference results and a maximum relative error of 2.86% at the time instant t = 

1.76 s was identified. As for Mesh 2, there was an average relative error in the order of 1.5% relative to the 

reference results and the highest relative error of 4.26% was observed at t = 0.33 s. 

In order to better simulate the damping effect induced by cable-pulley interactions in the experimental 

study, new simulations were carried out with Mesh 2, considering a critical damping ratio of 15%. From the 

results, it is observed that the present solution approximated better the experimental result, with an average 

relative error of the order of 1% and a maximum relative error of 2.5% at the time instant t = 0.33 s. Considering 

that the buoy vertical motion showed a well-behaved attenuation over time, it can also be concluded that the 

numerical sponge used here was able to satisfactorily avoid the reflection of waves in the flow field. Finally, Fig. 

8 also shows free surface configurations obtained here for some time instants. 
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Figure 8. Buoy vertical motion over time and free surface configurations, floating buoy with mooring 

4  Conclusions 

In this work a numerical model for FSI analysis of floating objects with mooring was developed. From the 

results obtained, it was observed that the CBS semi-implicit scheme adopted here proved to be numerically 

stable, presenting accurate predictions for free surface flow applications. A cable formulation based on NPFEM 

was utilized here for cable dynamics, obtaining results very similar to those presented by reference works. It was 

also observed that the Level Set method was successfully applied to complex problems involving two-phase free 

surface flows. Finally, the partitioned coupling scheme proposed in this work was validated using numerical 

simulation of experimental applications, including complex problems of floating objects with and without 

mooring cable, where accurate predictions were obtained with the present model. 
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