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Abstract. The structural analysis seeks to determine the behavior of a structure when subjected to external actions 

and makes it possible to obtain its responses in terms of stresses, strains, or displacements, for example. Most 

engineering structures present a linear elastic behavior, however, some complex structures, such as arches and tall 

buildings, may present a non-linear behavior, requiring tools that allow considering such effects to obtain more 

realistic results. In this context, the present work proposes a comparative analysis between linear and non-linear 

responses in space trusses through a computer program developed in Fortran language. The structure studied is a 

metallic lattice dome subject to self-weight loading, wind action, and temperature variation, considering the 

technical specifications of the ABNT NBR 6120:2019 and ABNT NBR 6123:1988. To describe the behavior of 

the structure it was used the finite element formulation for bar element and the geometric nonlinearity due to 

normal forces. The results showed that the internal forces on the bars can vary up to 850% between the analyzed 

cases.  
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1  Introduction 

Space trusses are being increasingly used in the civil construction, mainly as roofing in large works. Its main 

advantages in relation to other structural solutions are high rigidity, low weight, the possibility of prefabrication, 

and ease of transport and assembly. To analyze the internal forces of this type of structure, one must seek to 

faithfully represent its behavior. Therefore, the lowest possible degree of simplification is sought, adopting 

hypotheses that focus on the characteristics of the equilibrium equation and compatibility conditions of the 

structure.  

In most cases, these structures are calculated through linear static analysis, in which the ideal truss model is 

adopted, i.e., the nodes are considered as perfect hinges and ideal bars without initial imperfections and residual 

stresses. However, the linear analysis does not consider eccentricities, temperature variations, stresses from the 

assembly, section variations at the ends of the bars, and the type of node used in the structure. These factors can 

significantly influence the structural response of the bars, whether in the distribution of internal forces or in the 

calculation of displacements. Hence, the non-linear analysis reflects better the real conditions of the structure, and 

two types of non-linearity can be considered: the geometric one, where the calculation is performed in the displaced 

position of the structure; and the physical one, which considers the non-linear behavior of the material in the 

stress/strain ratio [1]. 

Therefore, this work aims to verify the behavior of a lattice dome through a linear and non-linear analysis 

subjected to self-weight load, temperature variation, and wind action. With the results obtained, the structural 

behavior is compared for each loading case.  
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2  Methodology 

This work studied a domed roof (Fig. 1) presented by Ribas [2]. The structure has height of 9 m and radius 

of 15 m, all bars have Young’s modulus E = 210 GPa and cross-sectional area equal to 15 cm². It was also 

considered that all bars have an outer diameter Φo = 8.0 cm and inner diameter Φi = 6.7 cm.

  
Figure 1. Lattice dome geometry 

The problem analyzed was solved through a computational routine developed in FORTRAN language. The 

bar finite elements analysis was based on the Displacement Method for the calculation of the stiffness matrix, 

force vector, and displacement vector referring to the degrees of freedom of the structure. The input data has been 

entered in a common text file containing the coordinates of the nodes, the connectivity of the bars, the material 

properties, concentrated forces, and boundary conditions. Based on this information, the problem analysis process 

begins. 

2.1 Linear analysis 

The matrix calculation of the structure starts from the premise of the linear equilibrium equation (eq. (1)), 

where the force vector F is directly related to the stiffness matrix K and the displacement vector U. 

 F K U=  (1) 

The assembly of the global stiffness matrix is performed considering the location and connectivity of each 

of the element nodes. For each element, the contribution to structure’s global stiffness matrix (K) is computed by 

performing a pre and post-multiplication of the local stiffness matrix of the bars KL by the transposed rotation 

matrix RT and rotation matrix R, according to eq. (2) and eq. (3). Through the coordinates is possible calculate the 

length L and the directional cosines Cx, Cy and Cz, with which the rotation matrix R is assembled, as stated by 

Mcguire and Ziemian [3]. 

Y
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After solving the eq. (1), the displacements are found and the determination of the axial forces of the bars 

FiL is carried out by the inverse principle of the equilibrium equation. This time, the forces found FiG have the 

global orientation, being necessary to rotate this vector to determine the axial loads, as shown in eq. (4). 

iL iGF RF KU= =
 

(4) 

2.2 Non-linear analysis 

When dealing with the nonlinear behavior of deformable bodies, the strain and displacement relationships 

turn out to be nonlinear. As a direct consequence, the stiffness matrix for truss elements is derived by assuming 

the contributions of the element linear displacements to the loading increment step [4], as demonstrated in eq. (5). 

1 2 3L e gK K K K K K= + + + +
 

(5) 

Where eK  is the elastic stiffness matrix (eq. (6)), Kg is the geometric stiffness matrix (eq. (7)), and K1, K2 

and K3 (eq. (8) to (10)) are the upper matrices, able to analyze the elongation and rigid body character of the truss 

element [5]. Martineli [6] shows the formulation used to determine these matrices in detail. 
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(9; 10) 

Where: 

𝐹𝐴𝑛−1
 – axial force applied in the previous step; 

𝐿𝑛−1 – bar length in previous step; 

𝑢 – local variation of the force acting on the X-axis of the bar; 

𝑣 – local variation of the force acting on the Y-axis of the bar; 
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𝑤 – local variation of the force acting on the Z-axis of the bar; 
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As in the linear analysis, is necessary to change the orientation of the bars for the global system using the 

same rotation matrix R. In the numerical implementation of non-linear analysis, the loads are applied gradually, 

and the displacements and axial forces are calculated for each new incremental step, consequently changing the 

stiffness. With the final nodal displacements (after incrementing the step of the forces), eq. (4) is used to obtain 

the internal axial forces in truss bars. 

2.3 Structural loads 

As dead load, only the self-weight of the lattice dome was considered. The weight of each bar (Wb) was 

calculated by the specific mass of steel. Then, the contribution of each bar was allocated to the global force vector 

from the force vector of each bar (FWb), according to eq. (11) and eq. (12). Where 𝐴 is the cross-sectional area, 𝐿 

is the length of the element, 𝑔 is the acceleration of gravity, and 𝜌 is the density of the material. 

 
b

W A L g   =  (11) 

   

 
0 0 0 0

2 2

b b

b

T

W

W W
F = − −

 
  

 (12) 

In addition, two live loads were considered, namely: wind action and temperature variation. The wind action 

was calculated using the equivalent static formulation presented by ABNT NBR 6123 [7]. For this purpose, it was 

arbitrated the wind acting on the Z-axis (Fig. 1), with the effective area of each bar (Aef) given by the projection of 

the element in the XY-plane (eq. 13). 

 2 2

ef ef x y
A L L= +  (13) 

The wind’s resultant force for each bar (𝐹𝑤𝑏) was calculated and allocated in the global force vector 

according to eq. (14), adopting: basic wind speed v0, topographic factor S1 = 1.0, roughness factor S2 = 1.0, 

probabilistic factor S3 = 1.0, and drag coefficient Cd = 1.2. 
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 (15) 

The temperature variation loading was implemented by eq. (16), considering a temperature variation t. 

Thus, the internal force of each bar is calculated by the sum of the effects of self-weight, wind and/or the thermal 

force (FT). Where 𝛼 is the coefficient of thermal expansion, Δ𝑡 is the temperature variation, 𝐸 is the Young's 

modulus of the material and 𝐴 is the cross-sectional area. 

 
T

F t E A   =   (16) 

Six load cases were analyzed: 

• Case 1: linear analysis only with self-weight load; 

• Case 2: non-linear analysis only with self-weight load; 

• Case 3: non-linear analysis with self-weight and thermal loads with four different temperature variations; 

• Case 4: non-linear analysis with self-weight and wind loads with four different velocities; 

• Case 5: linear analysis with self-weight load, wind load (v0 = 40 m/s) and thermal load (∆𝑡 = -10 ºC); 

• Case 6: non-linear analysis with self-weight load, wind load (v0 = 40 m/s) and thermal load (∆𝑡 = -10 ºC). 
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3  Results and discussion 

After processing the 6 cases, several analyzes were performed. Regarding Case 1, it was noted that all bars 

had only compressive forces, but with low values. The bars close to the supports were the ones with greater forces 

(see Tab. 1). The results of Case 2 were nearly to Case 1, the differences were less than 1.0%, i.e., the dome has 

linear behavior for self-weight dispensing the non-linear analysis. 

Table 1. Axial forces for self-weight – Case 1 

Bars Axial Force (kN) 

1, 2, 3, 4 – 1.50 

5, 6, 7, 8 – 1.23 

9, 10, 12, 13, 15, 16, 18, 19 – 1.66 

11,  14, 17, 20 – 2.74 

21, 27, 30, 34, 39, 43, 47, 49 – 0.92 

22, 25, 31, 33, 38, 41, 46, 50 – 1.79 

23, 26, 29, 35, 37, 42, 45, 51 – 1.90 

24, 32, 40, 48 – 4.52 

28, 36, 44, 52 – 4.05 

Table 2 shows the results obtained by Case 3, where there is a combination of self-weight and thermal load. 

Compared to the first case, the bars in the dome can suffer an increase in the modulus of the axial force of up to 

six times. In addition, in the same way as in Case 2, the bar elements of the structure may undergo a change from 

compressive to tensile stress depending on the temperature variation adopted. 

Table 2. Axial forces for self-weight and thermal load – Case 3 

Bars 
Axial Force (kN) Axial Force Variation (%) 

-10°C -5°C +5°C +10°C -10°C -5°C +5°C +10°C 

1, 2, 3, 4 -1.51 -1.50 -1.50 -1.50 0.33 0.10 0.04 0.21 

5, 6, 7, 8 -1.15 -1.19 -1.27 -1.31 -6.22 -3.14 3.20 6.45 

9, 10, 12, 13, 15, 16, 18, 19 -1.81 -1.73 -1.58 -1.51 9.22 4.59 -4.54 -9.04 

11,  14, 17, 20 -2.52 -2.63 -2.85 -2.96 -7.98 -4.00 4.03 8.08 

21, 27, 30, 34, 39, 43, 47, 49 -6.55 -3.72 1.87 4.63 615.22 306.35 -303.78 -605.05 

22, 25, 31, 33, 38, 41, 46, 50 3.79 1.00 -4.60 -7.43 -310.92 -155.82 156.55 313.80 

23, 26, 29, 35, 37, 42, 45, 51 3.96 1.04 -4.85 -7.80 -308.51 -154.54 155.13 310.84 

24, 32, 40, 48 -11.81 -8.16 -0.90 2.70 160.98 80.34 -80.02 -159.74 

28, 36, 44, 52 -10.68 -7.36 -0.76 2.52 163.42 81.56 -81.26 -162.22 

 

For Case 4, the results show that the axial forces can be four times greater than in Case 1. In addition, the 

wind load can change the type of stress in the bars, i.e., going from compression to tension, as shown in Fig. 2. 

 

 

Figure 2. Axial forces for self-weight + wind load – Case 4 
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Figure 3 presents the results of Cases 1, 2, 5 and 6. Even with greater variation in the results of Cases 5 and 

6, where a combination of self-weight load, wind load, and temperature load variation is applied, the effects of 

geometric nonlinearity increase the axial forces insignificantly, to a maximum of 2.0%. It is worth noting that 

when the structure is subjected to wind load combined with temperature variation, the internal axial forces on the 

truss bars increase by up to 850%. This must be observed for the correct design of the lattice dome. 

 

Figure 3. Axial forces for Cases 1, 2, 5 and 6  

Considering a real project situation in which the actions of wind and temperature would be increased by 

safety factors, the structure would be considered unsafe. For example, considering the indications of ABNT NBR 

8186:2003 [8] that provides values for safety factors  to be used in the verification of structural failure, the values 

of 1.25, 1.20, and 1.40 are indicated for self-weight, temperature, and wind actions, respectively. It also indicated 

the eq. 17 to analyze the various loading conditions for 𝑛 dead loads and 𝑚 live loads. In this equation, one of the 

variable loads is considered as main (𝑄1) and the other ones are considered as secondary (𝑄2,   3 … 𝑚), being 

multiplied by a reducing factor  (both temperature and wind have a coefficient equal to 0.6 when secondary). 

Figure 4 shows the variation of axial forces in bars 3, 9, 24, and 36 obtained through eq. 17. 

 

1 1

1 2
i i j j j

n m

d G G Q Q Q Q Q

i j

N N N N   
= =

   = + +   (17) 

 

Figure 4. Design axial forces 𝑁𝑑 (kN) for bars 3, 9, 24 and 36  
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As seen in Fig. 4, the consideration of variable loads must be carried out bar by bar, since for some elements 

the influence of temperature is more significant (e.g. bars 24 and 36), in others the action of the wind is more 

important (e.g. bar 3), while others both are important (e.g. bar 9). Finally, it should be noted that some bars (e.g. 

bars 24 and 36) should be designed for both traction and compression. And it is important to emphasize that 

although the internal forces (and stresses) are still relatively small considering the physical and geometric 

properties adopted, the base elements are at the limit for buckling since they are very slender, for bar 24, for 

example, the critical buckling load is equal to 13.48 kN. 

4   Conclusions 

Trusses are structures widely used in civil construction and are a viable solution for large spans. This is due 

to the fact they obtain high rigidity with reduced weight and excellent redistribution of forces. The domes, in turn, 

increase the load redistribution characteristics by having an arc shape. 

Thus, with the results obtained in all load cases for the lattice dome, it is concluded that the variation of the 

axial forces in the tubular steel bars increases significantly when the structure is requested by live loads. For 

example, this increase can reach a variation of 850% when comparing Case 1 with Case 5. This shows the need 

for structural analysis in the design of trussed domes, considering all possible types of loads that a structure is 

subject to. 

Furthermore, due to the symmetry of spherical domes, the greatest axial forces were in the bars positioned 

close to the support. The maximum force was 13.75 kN (compression), in the case with a combination of self-

weight load, wind load, and thermal load. 

Regarding the comparison between the linear and non-linear analysis solution, the results obtained were not 

significant enough. There was only a maximum increase of 2.0% in the axial forces when comparing Case 5 with 

Case 6.  
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