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Abstract. Explosive loads have been the target of study in recent years due to the catastrophic effects that this 

type of loading can cause in civil engineering structures. This phenomenon is characterized by the release of energy 

in short time intervals, causing a peak of overpressure and, in sequence, a suction process, or overpressure. Due to 

the high impact, this episode can generate catastrophic effects on structures, such as partial or total collapse, and 

in severe cases, several deaths. At the same time, laminated plates are structural elements that are being studied 

for their characteristic of improving the physical properties of the primary materials used in their composition. 

Thus, this work aims to present a study on laminated plates, present in literature, subjected to blast loads to 

reproduce the results. In the sequence, an evaluation of their behavior when the negative phase is not considered 

is verified, to understand how this portion of the loading influences the final behavior of the structure. Finally, a 

parametric study of the laminated plates is performed to determine, for each structure, equations of correlation 

between the maximum displacement obtained by the structure and characteristic parameters of the shock wave. In 

the calculation process, for each example present in the literature, a plate theory is used, considering second-order 

effects. The differential equations are obtained according to the Total Minimum Potential Energy, in their solution, 

the Galerkin method is employed, and, finally, to obtain the displacements the Runge-Kutta numerical method is 

used. 
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1  Introduction 

Many studies have been realized about the behavior of laminated plate structures in static and dynamic 

analysis, based on the versatility of application in several areas, such as civil, mechanical, and aeronautical 

engineering, among others. However, the result of dynamic behavior has been the focus of research, especially for 

cases of extreme loads, such as explosions. 

Composite laminated plates are formed by a set of layers, which can be treated according to the prerogatives 

of Kirchhoff or Mindlin methodologies. In addition of that, the explosion phenomenon corresponds to a rapid 

release of energy from an explosive source. The first recorded studies of the explosion phenomenon are realized 

by Friedlander [1], who suggested a simple formula to characterize blast waves. Granström [2] recorded studies 

on the best negative phase equation. Subsequently, the US Department of Defense [3] presented a complete manual 

of the mathematical characterization of the blast wave. Rigby et al. [4] and Rigby [5] use the abacus provided by 

the US Department of Defense [3] to characterize the curves and convert them to the SI.  

Studies of single and multi-laminar plates were also a focus for the explosive loads consideration. Gupta [6] 

presented an analysis with a mathematical formulation of a thin plate, considering only the positive phase in the 

blast wave. Librescu and Nosier [7] presented analyzes of laminated plates subjected to explosive charges and 

sonic explosions. Wei and Dharani [8] realized studies related to laminated sandwich plates, in which layers are 

made of glass and the core of PVB (polyvinyl butyral). Kazanci and Mecitoglu [9] consider the nonlinear behavior 

of the plates and consider the Friedlander equation as the explosive load. Susler et al. [10] applied explosive load 
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to laminated plates with thickness variation. Amabili et al. [11] studied the behavior of a laminated glass plate 

considering the nonlinear geometric effect on the structure. The American Society of Civil Engineers (ASCE [12]) 

has published a document referring to structures in general subjected to explosive charges. Reis [13], Reis et al. 

[14] and Reis et al. [15] presented a study of thin plates subjected to explosive loads considering the use of Single 

Degree of Freedom (SDOF). Reis et al. [15] presented examples from the literature and compared the results for 

the explosion equated by the cubic polynomial, thus emphasizing the difference in results in the maximum 

displacement of the structure when comparing the use of the negative phase with the using only the positive phase. 

2  Methodology 

2.1 Laminated Plate 

According to Reddy [16] and Mendonça [17], composite materials are formed by at least two materials that, 

on a macroscopic scale, have better properties than conventional materials, when analyzed individually, would not 

be able to obtain the same properties as needed. Composite laminates correspond to layers of different materials, 

each one usually formed by fibers, which orientation will define the resistance capacity and improve the 

mechanical properties of the structure, as shown in Fig. 1. 

 

  (a)     (b)         (c) 

Figure 1. (a) Composite laminated plate, (b) Transversal section in laminated plate, (c) Global axes in structure 

2.2 Strain-Displacement Relations 

It is considered a rectangular plate of length a, width b and height h, composed of k layers of location of its 

upper fibers zi each, as shown in Fig. 1. The main theories of laminated plates are given by the Classical Laminated 

Plates Theory (CLPT), Classical Laminate Plate Theory – von Kárman (TvK), First Order Laminated Plate Shear 

Theory (FSPT) and High Order Laminated Plate Shear Theory (HSPT), as presented by Reddy [16]. For this, the 

displacements are represented according to Equation (1). 
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where u, v, and w are displacements in directions x, y, and z, respectively, u0, v0 and w0 are the midpoint 

displacements in directions x, y e z, respectively, θx and θy are the rotations of a transversal normal about the y- 

and x-axis, respectively, and αi is an auxiliary parameter, presented in Tab. 1. Regarding the strain-displacement 

relation, Equation (2) shows a general expression considering the plate theories mentioned previously. 
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(2) 

where εxx, εyy, and εxz are the bending strains, γyz and γxz are the transverse shear strains, ε(0)
ij are the middle surface 

strain, κ(1)
ij and κ(3)

ij are the flexural bending strains (curvatures), γ(0)
ij and γ(2)

ij are the first and high order of 

transverse shear strain, respectively, as presented by Reddy [16]. 
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Table 1. αi values 

Theory α1 α2 α3 

CLPT -1 0 0 

FSPT 0 1 0 

TSPT 0 1  24 3 h  

TvK -1 0 0 

2.3 Constitutive Relations 

Considering that the material is orthotropic, with k layers present in the plate, and according to Mendonça 

[17], the structure is under plane stresses state, the stiffness parameters are present by Equation (3): 
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(3) 

where σl
i and τl

ij are the bending stress and shear tensile for each layer, [Q] is the stiffness matrix of each layer 

(local system), εl
i and γl

ij are the bending strain and shear strain of each layer, Ei is the Young’s Modulus in i axis, 

νij is the Poisson rate, Gij is the shear modulus. For the global system, Equation (4) shows: 

( ) ( )( )

( )( ) ( )11 12 16

44 45

12 22 26

45 55

16 26 66

, ,

k kk

kk kxx xx

yz xy

yy yy

xz xz

xy xy

Q Q Q
Q Q

Q Q Q
Q Q

Q Q Q

 
 

 
 

 

    
        

          
        

      

(4) 

where σij, τij, [Ǭ], εij, and γij are global bending and shear stresses, global stiffness matrix, and global bending and 

shear strains, respectively. All expressions to obtain [Ǭ] can be verified in Reddy [16] and Mendonça [17]. 

2.4 Governing Equations 

The process of obtaining the governing equations corresponds to that used by Reddy [16], considering 

Hamilton's principle, represented by Equation (5). 
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where U, K, and W are the strain, kinetic, and work energies, respectively, as Equations (6) to (8). 
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where ρ0 and q0 are the density of the material and the external load applied, respectively. 

2.5 Solution 

Based on Reddy [16], was presented the process for cross-ply plates, classified as SS1, and angle-ply, given 

by SS2, represented simply supported plates. Expressions for cross-ply plates are presented in Equation (9).  
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where Umn, Vmn, Wmn, Xmn, and Ymn are Fourier’s series parameters and m,n = 1,3,5...  

The process for both cases is the same, the difference is given by the displacement equations applied, which 

one for the SS2 case there is a difference only in the expressions of u0 and v0, i.e., u0 = 

∑∑Umn(t)sin(πmx/a)cos(πnx/b) and v0 = ∑∑Vmn(t) cos(πmx/a)sin(πnx/b). Applying the Fourier series, represented 

by Equation (9), in Equation (5), the differential system of equations to be solved is observed in Equation (10): 
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where [M], [C], and [K], are the mass matrix, damping matrix and stiffness matrix of the structure, respectively, 

N2(Δ) and N3(Δ, Δ)  are matrices of first and second-degree functions of the parameters of the Fourier series present 

in Equation (9) and {F} is the vector of forces. The solution of Equation (10) is given according to the numerical 

method of Runge-Kutta since it is a highly nonlinear equation. 

2.6 Explosive Load 

Blast waves correspond to a rapid release of energy from an explosive source. When this wave reaches a 

bulkhead, an overpressure peak, pmax, is generated, which decays exponentially according to the decay coefficient, 

a', until zero pressure, at time td, which is the duration of the positive phase. Then, the negative phase begins, 

reaching a maximum under pressure, pmin. Finally, this pressure gradually increases until it once again reaches the 

value of zero, when the load application ends, whose duration of this phase is t-
d (Reis et al. [15]). The blast wave 

behavior is present in Rigby et al. [4], Reis [13], Reis et al. [14], and Reis et al. [15]. The characterization of the 

curve was studied by Friedlander [1] and Granström [2], who elaborated the equations of the positive and negative 

phases, respectively, according to Equation (11). In addition, it is important to notice that all parameters present 

in Equation (11) are determined in this work according to the US Department of Defense [3] abacus, which is 

directly related to the parameter Z, scaled distance, given in Equation (12). Also, for the example presented in this 

work, the blast wave equation is applied using the expanded Friedlander equation. In other words, the Friedlander 

equation was used for both positive and negative phases. 
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where R is the distance between the explosive source and the plate and WTNT is the explosive mass. 

3  Results 

Considering that in the literature there are some examples of plates subjected to explosive loads, specific for 

each case, this work improves the evaluation of one example of a structure through parametric analysis of the 

loading used. In other words, demonstrate how the structure performs, the maximum displacement of the structure 

(uz/h), by varying the parameters of Z (scaled distance) and WTNT, to develop its general displacement equations. 

Wei and Dharani [8] present a study about sandwich plates composed of outer layers of glass and the core of PVB. 

For this analysis, a sandwich plate with 1m x 1m was subjected to blast load, whose parameters are overpressure 

pmax = 6894.8 Pa, time duration of positive phase td = 0.0077 s and decay coefficient a’ = 0.55. Both materials, 
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glass and PVB, were considered in this model as isotropic. The properties of glass and PVB are shown in Tab. 2. 

In addition, Wei and Dharani [8] showed that PVP material is characterized by two types of shear modulus, i.e., a 

short-term shear module (G0) and a long-term shear module (G∞). Considering the total time of this analysis is 

sufficiently small, only G0 was used as shear module. 

Table 2. Characteristics of structure, Wei and Dharani [8]  

Data Glass PVB 

hi (m) 0.00476 0.00152 

E1 = E2 (GPa) 72 0.98 

G12 = G13 = G23 (GPa) 28,8 - 

G0 (GPa) - 0.33 

ν12 = ν13 0.25 0.4918 

ρ (kg/m³) 2500 1100 

 

Figure 2. Midpoint displacement x time, Wei and Dharani [8] 

Fig. 2 shows the results obtained by Wei and Dharani [8], curves [1] and [2], and the other ones obtained by 

the present work, curves [3] and [4]. The first curve represents the nonlinear analysis using the mathematical model 

by Wei and Dharani [8], where the maximum displacement occurs in uz/h = -1.083221 when t = 0.023966s. The 

second curve is a finite element model, also developed by Wei and Dharani [8], to compare with the curve [1]. In 

this case, this model shows the maximum displacement in uz/h = -1.139249, when t = 0.024924s. The third curve 

is the present mathematical model considering the negative phase in the analysis, the maximum displacement is 

registered in uz/h = -1.227630 when t = 0.025643s. Finally, curve [4] is a representation of the same analysis 

without the negative phase. The results obtained is a maximum displacement uz/h = -0.516321, when t = 0.021710s.  

The response of the structure is shown in Fig. 2. It is possible to observe that there is a curve, [3], that 

considers the negative phase and another, [4], which only considers the positive phase and this one results in a 

maximum relation uz/h = -0.5163, while the first one uz/h = -1.2276. 

For the parametric analysis, the Excel Solver was used to find ideal values of Z and WTNT based on the loading 

information presented in Tab. 2. In this way, the results obtained were WTNT = 2.62 kg and Z = 23.168 m/kg1/3. 

Fig. 3 (a) shows the behavior of the structure when subjected to explosive loads (including the negative phase) 

between WTNT = 10 kg and WTNT = 100 kg. Considering this case, the ratio |uz/h| for WTNT = 2.62 kg, WTNT = 10 

kg, WTNT = 20 kg, WTNT = 40 kg, WTNT = 60 kg, WTNT = 80 kg and WTNT = 100 kg where Z = 23.168 m/kg1/3, are 

|uz/h| = 1.389113, |uz/h| = 1.578581, |uz/h| = 1.586943, |uz/h| = 1.601907, |uz/h| = 1.699387, |uz/h| = 1.768155 and 

|uz/h| = 1.819792, respectively. These |uz/h| cause, in relation to WTNT = 2.6225 kg, a difference corresponding 

to13.63%, 14.24%, 15.31%, 22.33%, 27.28% and 31% in this order. 

In the same way, an evaluation for |uz/h| based on WTNT for different Z values, as shown in Fig. 3 (b). As 

expected, smaller values of scalar Z distances (m/kg1/3) present the largest displacements |uz/h|. Therefore, based 

on the recurrence of Fig. 3 (a), it is possible to determine a characteristic equation of this plate, that is, a relation 

between uz/h, Z, and WTNT, where Z and WTNT are the input data. Based on this, the representative expression of 

the plate of Wei and Dharani [8] is given by Equation (13). 

Equation (13) presents the main behavior of the curves shown in Fig. 3 (a) corresponds to a 5th degree 

polynomial function and the recurrences of the coefficients of each parameter Zi are well represented by a 3th 

degree polynomials function. Furthermore, it is verified that this equation is numerically determined since the 

solution of the system of differential equations problem is given by Runge-Kutta, a numerical solution. 
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Dynamic Amplification Factor (DAF), the behavior of the structure of Wei and Dharani [8] considering Z = 

23.168 m/kg1/3. The configuration of the DAF curvature is performed based on the load variation, Fig. 4. An 

interesting point to note corresponds to the peaks present in the DAF graph, in which Reis [13] and Reis et al. [15] 

show that such an increase may be the prominence of the effect of the negative phase in relation to the positive 

phase or the presence of resonance. This process is observed when the two curves are compared, considering or 

not the negative phase, in Fig. 4. In this case, considering specific values of TNT mass, scalar distance, and the 

physical-geometric characteristics of the structure, the highest displacement, in absolute numbers, occurs during 

the negative phase. 

  
                    (a)                                                                            (b) 

Figure 3. (a) ratio uz / h versus Z (b) ratio uz / h versus WTNT 

 

Figure 4. DAF versus td / TL 
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4  Conclusions 

This work aims to present the nonlinear behavior of laminated plates subjected to explosive loading, 

considering plate theories already established in the literature. 

The process of determining the governing equations was performed using Hamilton's method, applying the 

expressions of internal and external energies of the structure. The solution used corresponds to the application of 

the Fourier series for simply supported plates. In the solution of the system of differential equations, the Runge-

Kutta method is the best and most applied, since such equations are highly nonlinear. 

Considering an example of a laminated plate subjected to explosion present in the literature, this work 

improved the research by performing a parametric analysis to understand how the structure used would behave 

through the variation of loading parameters. Verified, based on this, that the plate has a similar behavior for each 

variation of explosive mass, being able to generate an equation that correlates the maximum displacement of the 

structure with the two main explosive parameters. Finally, in the DAF evaluation, it becomes evident that the 

consideration of the negative phase is essential since for low values of td/TL, where the difference in results between 

the use and non-use of the negative phase becomes expressive. However, more studies are necessary to confirm if 

this case is characterized using negative phase or if there is the presence of resonance. 
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