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Abstract. This paper presents a computational tool for designing composite materials with periodic 
microstructures for optimal effective elastic properties. The effective elastic properties of the periodic porous 
material are evaluated through a combination of the homogenization method and finite-volume theory analysis. 
The finite-volume theory results are employed in the topology optimization procedure, combining this technique 
with the dual optimization algorithm of convex programming. In this approach, to find the optimal microstructural 
topology for the periodic unit cell, specific linear combinations of the components of the effective elastic tensor 
are considered to obtain extreme elastic properties, such as the maximum shear or bulk modulus under a prescribed 
volume constraint. Some numerical examples involving materials with periodic porous microstructures are 
analyzed, and the results demonstrate the finite-volume theory formulation’s performance for the optimal design 
of composite porous materials. 
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1  Introduction 

Composite materials have gotten the interest of many researchers and found important applications in the 
more diverse modern industrial sectors because such materials, in general, present behavior quite different in 
comparison with the traditional homogeneous materials (Santos Júnior et al. [1]). Materials with porous 
microstructures correspond to a particular class of composite materials and are widely found in nature, such as 
honeycomb architecture, bone, and bamboo. The objective of the material design is to create a new microstructure 
that produces similar behavior to those natural materials.  

Topology optimization (Bendøe and Kikuchi [2]) has grown as an interesting technique for designing 
microstructural topologies. Several studies have been developed to provide an efficient material layout accounting 
for the required performance and employing less material. In that regard, Wang et al. [3] provide a systematic and 
comprehensive review of educational articles and codes on structural and multidisciplinary optimization. 

Initially presented by Bansal and Pindera [4], the finite-volume theory emerged as a powerful alternative to 
the established finite element method for analyzing structures and materials. According to Cavalcante et al. [5], 
this technique employs the volume average of the many fields that define the material’s behavior and apply 
boundary and continuity conditions between adjacent subvolumes in an average sense. In the context of designing 
optimal structures, this theory was first employed by Araujo [6] and Araujo et al. [7, 8]. 

This work presents a computational tool based on finite-volume theory for designing periodic porous 
materials with extreme elastic properties. To verify the performance of this approach, some examples of periodic 
porous materials were analyzed and the results are discussed. 
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2  Finite-volume theory for periodic materials 

The finite-volume theory version presented here corresponds to a zeroth-order formulation for rectangular 
analysis domain discretized in rectangular subvolumes based on an elastic mechanical stress analysis (Cavalcante 
and Pindera [9], Cavalcante et al. [10]). In this approach, the displacement field is approximated by the second-
order Legendre polynomial expressed as a function of the local coordinates inside each subvolume, the boundary 
and continuity conditions are imposed in a surface-averaged sense, and the equilibrium equations are satisfied at 
the subvolume level. 

Following Drago and Pindera [11], we consider periodic materials characterized by the basic building block 
called a repeating unit cell (RUC) which is replicated to generate the periodically repeating material 
microstructure, see Fig. 1. Hence, the response of the periodic material is characterized by the response of a single 
unit cell subjected to periodic boundary conditions. Such problems are typically treated using the asymptotic 
homogenization theory (Bensoussan et al. [12]). In its simplest form, the displacement field representation in the 
qth subdomain in terms of two-scale expansion in global and local coordinates (x1, x2) and (y1, y2), respectively, 
involving macroscopic and microstructure-induced fluctuating components are expressed by, 

 𝑢௜
(௤)

(𝒙, 𝒚) =  𝜀௜̅௝𝑥௝ + 𝑢෤௜
(௤)

(𝒚),   (𝑖 = 1, 2), (1) 

where 𝑢෤௜
(௤) denote fluctuating displacement components induced by the heterogeneous microstructure and 𝜀௜̅௝ are 

the specified macroscopic or average strains applied to the entire material. 
 

 

 

Figure 1. Periodic microstructure characterized 
by an RUC 

Figure 2. Discretized analysis domain and local 
coordinate system of a generic subvolume q 

 
The rectangular domain in the y1 - y2 plane occupies the region 0 ≤ y1 ≤ L and 0 ≤ y2 ≤ H,  and is discretized 

into Nβ horizontal subvolumes and Nγ vertical subvolumes denoted by pairs (β, γ), see Fig. 2. The subvolume 
dimensions are lq and hq for (β = 1,…, Nβ and γ = 1,…, Nγ) along the y1 and y2 axes, respectively. Each subvolume 
may contain different elastic material characterized by constant moduli. In cartesian zeroth-order formulation, the 
components of the displacements field in the local coordinates system are approximated by the second-order 
polynomial (Cavalcante et al. [10]), 
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where 𝑖 = 1, 2 and 𝑊௜(௠௡)
(௤)  are unknown coefficients. These coefficients are expressed as a function of the surface-

averaged fluctuating displacements as follows, 
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 (3) 

where 𝑢ො௜
(௤,௣) corresponds to the surface-averaged fluctuating displacements on the face p of qth subvolume. The 

surface-averaged fluctuating displacements are then related to the surface-averaged tractions upon use of Cauchy’s 
relations 𝑡௜

(௤,௣)
= 𝜎௝௜

(௤,௣)
𝑛௝

(௤,௣), the constitutive equations 𝜎௝௜ = 𝐶௜௝௞௟𝜀௞௟, the kinematic relations between 
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displacements and strains and the following definitions, 
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  (4) 

Employing the equilibrium equation at level of the qth subvolume, 

 ∫ 𝒕ො(௤)𝑑𝑆
ௌ

= ∑ ∫ 𝑡̂௜
(௤,௣)

𝑑𝑙௣௟೛

ସ
௣ୀଵ = ∑ 𝑙௣𝑡̂௜

(௤,௣)ସ
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where 𝒕ො(௤) = ൣ𝑡̂௜
(௤,ଵ)
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(௤,ଶ)

 𝑡̂௜
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൧
்
. In linear elastic analysis, this leads to the local stiffness matrix for each 

qth subvolume, 

 𝒕ො(௤) = 𝑯(௤)𝜺ത + 𝑲(௤)𝒖ෝ(௤), (6) 

where 𝒖ෝ(௤) = ൣ𝑢ො௜
(௤,ଵ)

 𝑢ො௜
(௤,ଶ)

 𝑢ො௜
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(௤,ସ)

൧
்
. The matrix 𝑯(௤) contains positive and negative elements of the stiffness 

matrix 𝑪(௤) whose sign depends on the direction of the unit normal vector associated with the given subvolume 
face, 𝜺ത is the macroscopic strain and 𝑲(௤) is the local stiffness matrix. 

According to Cavalcante et al. [10], imposition of traction and displacement continuity between adjacent 
subvolumes in a surface-average sense, together with periodic boundary conditions, produces the global system of 
equations for the unknown fluctuating surface-averaged interfacial displacements, symbolically expressed in the 
form, 

 𝑲𝒖ෝ = 𝓗𝜺ത, (7) 

where 𝒖ෝ is the global surface-averaged fluctuating displacements, 𝑲 is the global stiffness matrix and 𝓗 
corresponds to the matrix comprised of the differences in the material stiffness matrices of adjacent subvolumes. 

3  Homogenization of periodic materials and sensitivity analysis 

The effective elastic properties of periodic composite material can be evaluated by asymptotic 
homogenization theory (Bensoussan et al. [12). This theory corresponds to a solid mathematical formulation and 
provides rigorous convergence estimates of the displacements field. In its simplest form, the effective stiffness 
tensor is given by volume average over the base cell Ω as follows, 

 𝐶௜௝௞௟
ு =

ଵ

|ఆ|
∫ 𝐶௜௝௣௤൫𝜀௣̅௤

(௞௟)
− 𝜀௣̃௤

(௞௟)
൯𝑑𝛺

ఆ
, (8) 

where |Ω| denotes the area, for plane analysis, and 𝜀௣̃௤
(௞௟) corresponds to periodic or fluctuating strain solution of, 

 ∫ 𝐶௜௝௣௤𝜀௜௝(𝜐)𝜀௣̃௤
(௞௟)

𝑑𝛺 = ∫ 𝐶௜௝௣௤𝜀௜௝(𝜐)𝜀௣̅௤
(௞௟)

𝑑𝛺
ఆఆ

, (9) 

where 𝜐 ∈ 𝐻௣௘௥
ଵ (𝛺) which is Ω-periodic admissible arbitrary displacements field and 𝜀௣̅௤

(௞௟) the macroscopic or 
average strains applied to the entire material. In 2D analysis, 𝜀௣̅௤

(௞௟) corresponds to three linearly independent unit 
test strains field. Note that eq. (9) corresponds to the weak form of the standard elasticity equation applied to 
periodic boundary conditions. Employing the concept of element mutual energies (Sigmund [13], Xia and 
Breitkopf [14]), eq. (8) can be rewritten in equivalent form, 

 𝐶௜௝௞௟
ு =

ଵ

|ఆ|
∫ 𝐶௣௤௥௦𝜀௣௤

஺(௜௝)
𝜀௥௦

஺(௞௟)
𝑑𝛺

ఆ
. (10) 

where 𝜀௣௤
஺(௞௟) corresponds to superimposed strain field ൫𝜀௣̅௤

(௞௟)
− 𝜀௣̃௤

(௞௟)
൯ in eq. (8). In the finite element analysis, the 

RUC is discretized into Ne elements and eq. (10) is approximated by, 

 𝐶௜௝௞௟
ு =

ଵ

|ఆ|
∑ ൫𝒖௘

(௜௝)
൯

்
𝑲௘𝒖௘

(௞௟)ே೐
௘ୀଵ , (11) 

where 𝒖௘
(௞௟) represents the local displacement field for each isolate test strain case 𝜺ത(௞௟), and Ke the element stiffness 

matrix.  
In this work, the finite-volume theory applied to the linear elastic analysis of periodic composite materials 



Topology Optimization of Periodic Materials Employing the Finite-Volume Theory 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu, Brazil, November 21-25, 2022 

was constructed based on asymptotic homogenization theory for computing the displacement field on the RUC. In 
this context, the correspondent effective tensor (in matrix form) evaluated in terms of element mutual energies, 
similar to the finite element method analysis, can be assessed as follows, 

 𝐶௜௝௞௟
ு =

ଵ

|ఆ|
∑ ቀ𝒖(௤)ห

(௜௝)
ቁ

்

𝑲(௤)𝒖(௤)ห
(௞௟)ே೜

௤ୀଵ , (12) 

where 𝒖(௤)ห
(.)

 denotes the subvolume surface-average displacement vector for each isolate test strain case 𝜺ത(.). 
The local material can be treated as isotropic for deriving the sensitivities in terms of the penalized elastic 

properties. In this sense, we employ the scheme proposed by Stolpe and Svanberg [15], known as the Rational 
Approximation of Material Properties (RAMP), to evaluate Young’s modulus in terms of the density (ρq) at the 
level of the subvolume (q) as follows, 

 𝐸(௤) = 𝐸௠௜௡ +
ఘ೜

ଵା௣(ଵିఘ೜)
(𝐸଴ − 𝐸௠௜௡),  𝜌௤ ∈ [0,1]. (13) 

where 𝑝 is the penalization factor, E0 and Emin represent the Young’s modulus of solid material and Young’s 
modulus of the Ersatz material (to avoid singularity of stiffness matrix).  This scheme presents a desirable feature, 
a nonzero sensitivity at zero density. According to Deaton and Grandhi [16], the RAMP method remedies some 
numerical difficulties due to very low-density problems. In this context, the sensitivities of 𝐶௜௝௞௟

ு  is derived as, 

 
డ஼೔ೕೖ೗

ಹ

డఘ೜
=

ଵ

|ఆ|

డா(೜)

డఘ೜
ቀ𝒖(௤)ห

(௜௝)
ቁ

்

𝑲଴𝒖(௤)ห
(௞௟)

. (14) 

where K0 denotes the subvolume stiffness matrix for a subvolume of solid material. 

4  Topology optimization of material microstructure 

Following Xia and Breitkopf [14], to obtain periodic porous material with extreme properties for specified 
boundary conditions and volume constraints, we define the mathematical formulation of the optimization problem 
as follows,  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
ఘ

     𝜓(𝐶௜௝௞௟
ு (𝝆))             

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑲𝒖ෝ|(.) = 𝓗|(.)𝜺ത    

                        
ଵ

|ఆ|
∑ 𝑣௤

ே೜

௤ୀଵ 𝜌௤ ≤ 𝜗

             0 ≤ 𝜌௤ ≤ 1

 (15) 

where 𝜓(𝐶௜௝௞௟
ு (𝝆)) corresponds to objective function, 𝒖ෝ|(.) and 𝓗|(.) the global surface-average fluctuating  

displacements vector and the matrix comprised of the differences in the material stiffness matrices of adjacent 
subvolumes for the isolate test strain (.), respectively, and ϑ denotes the volume fraction of solid material.  

5  Numerical examples 

To verify the performance of the finite-volume theory employed in the topology optimization design of 
porous materials with extreme elastic properties, some numerical examples are analyzed and the results consider 
three different initial design domains of porous material. The following examples adopted a solid material with 
Young’s modulus E = 1, Poisson’s ratio ν = 0.3, a penalization factor p = 5, and the RUC discretized into 100 x 
100 subvolumes for all analyses. The problem of eq. (15) is solved by the Optimality criteria method of the 
heuristic update scheme (Bendsøe and Sigmund [17]) with a damping factor set up to 0.5. 

5.1 Maximizing the shear modulus 

The objective function for maximization of the material shear modulus in plane stress analysis can be stated 
as follows,  

  𝜓 = −𝐶ଵଶଵଶ
ு . (16) 
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A comparison of final topologies of the RUC with maximum shear modulus and their correspondent 
effective elastic matrix for three different initial design domains is shown in Fig. 3 for no-filter scenario, 
considering the volume fraction of solid material ϑ = 0.5. Different initial designs A and B, with the same 
porosities (12.64%), result in identical final topologies with similar shear modulus (0.1350). Figure 3 also shows 
the analysis results considering the initial design C with porosity equal to 25.68%, a combination of the initial 
designs A and B. This last analysis shows that the initial design domain affects the final topology because the 
algorithm is more likely to get trapped in a local minimum, as verified by Xia and Breitkopf [14]. Note that no 
checkboard pattern appears when the finite-volume theory is employed without a filtering technique. This 
important feature originates in the satisfaction of continuity conditions in a surface-averaged sense between 
adjacent subvolumes, which provides interfacial connections, differently from the displacement formulation of the 
finite element method, where the elements are connected through the nodes, Araujo [6] and Araujo et al. [7, 8]. 
Sometimes the array of 3x3 RUCs obtained from different initial design domains are shifted versions of the same 
topology, see red and blue square boxes in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3. Microstructures of porous materials with maximum shear modulus and effective elastic matrices 

𝐂ு – no-filter scenario 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Final topologies of initial design domain C with maximum shear modulus and effective elastic 
matrices 𝐂ு in respect to density filter 

 
To show the influence of filters on the final topology layout for maximization of material shear modulus, we 

consider the initial design C for the radius of filter rmin equal to 2, 5, and 10 times the dimension of the subvolume. 
The filtering technique employed here corresponds to the density filter presented by Andreassen [18]. Figure 4 
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illustrates that the choice of filter radius severely influences the final topology and the corresponding effective 
elastic properties, with a less complex topology for a higher filter radius, with the cost of a lower effective elastic 
property. The maximized effective shear modulus are 0.1230, 0.1022, and 0.0988 for the found optimum 
topologies, values corresponding to 93%, 77%, and 75% of the maximized effective shear modulus of 0.1324 
obtained for a no-filter scenario, adopting the same initial design domain. Gray regions are also observed in the 
density filter scenario, especially for the largest filter radius. 

5.2 Maximizing the bulk modulus 

For maximizing bulk modulus of porous materials, the objective function is given with a linear combination 
of the components of effective elastic tensor. In plane stress analysis, the following expression can be adopted to 
maximize the material bulk modulus, 

 𝜓 = −
ଵ

ସ
(𝐶ଵଵଵଵ

ு + 𝐶ଵଵଶଶ
ு + 𝐶ଶଶଵଵ

ு + 𝐶ଶଶଶଶ
ு ). (17) 

In Fig. 5, the initial designs A, B, and C were considered and the topology optimization results are produced 
when no filter and filtering schemes are employed to show the performance of the finite-volume theory in the 
design material with extreme bulk modulus. In this case, two different filter radii are adopted, and the volume 
fraction of solid material is ϑ = 0.5. Once again, a checkboard pattern is not observed in the no filter scenario, 
with less influence of the initial design domain in the final design material in comparison with the density filter 
scenario. In other words, the no filter scenario is more stable considering the local minimum problem. Furthermore, 
gray regions are also observed in the density filter scenario, especially for the largest filter radius. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Comparison of microstructures of porous materials with maximum bulk modulus 

 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 6. Effective bulk modulus versus the volume fraction constraints 
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Figure 6 shows the effective bulk modulus variation versus the solid material’s volume fraction constraints 
(ϑ) for fixed filter radius rmin = 2 times the dimension of the subvolume. Topology optimization produces a final 
topology with the effective bulk modulus satisfying the Hashin-Shtrikman [19] upper bound. Furthermore, 
employing finite-volume theory without filtering techniques for material design results in higher effective elastic 
properties of the material. 

6  Conclusions 

In this investigation, the finite-volume theory was employed to analyze periodic porous medium in topology 
optimization for design materials. The results were shown for extreme material properties of shear and bulk 
modulus using the RAMP method for material penalization. Topologies obtained by finite-volume theory analysis 
when no filtering techniques are employed result in more complex designs without gray regions and no checkboard 
pattern, demonstrating efficiency for the analyzed examples. Besides, these topologies present higher values for 
the maximized effective elastic properties than those obtained in the density filter scenario. These preliminary 
results are encouraging but require more investigation. 
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