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Abstract. The present work aims to propose a lumped plasticity-based numerical formulation for the non-linear
analysis of concrete-filled steel tubular (CFST) columns. The study is divided into two main parts: cross-sectional
analysis and global structural analysis. The local analysis is made by means of the strain compatibility method.
Thus, the moment-curvature relationship is evaluated by an incremental-iterative process. Through of this method-
ology, the limits of uncracked, cracked, elastic, inelastic and bearing capacity are determined for various axial
efforts. Thus, the NM diagram is calculated with three curves and five regimes to describe the cross-section flex-
ural stiffness. For the precise evaluation of this numerical procedure, the materials constitutive relationships are
explicitly considered. For the global analysis, the co-rotational-based approach is used to describe the finite ele-
ment formulation allowing large displacements and rotations in the numerical model. This approach is coupled to
rotational pseudo-springs at the ends of the finite element, where the gradual loss of stiffness was determined by
combining the normal force and bending moment (NM) in the cross-section. The numerical results were compared
with experimental results [15]. In average, the results found present an error of 0.1% in relation to the data obtained
in the laboratory, demonstrating the accuracy of the proposed numerical formulation.

Keywords: CFST, lumped plasticity, NM diagram, non-linear analysis, pseudo-springs.

1 Introduction

Among the most used materials in civil construction, concrete and steel stand out. The association of these
materials aims, fundamentally, for the best physical and mechanical use of them. Steel-concrete composite columns
have high load–carrying capacity and stiffness if compared to the usual reinforced concrete and bare steel elements.
Moon et al. [1] highlighted that the external steel tube of the concrete-filled composite columns (CFST) is also used
to replace the formwork during the construction phase, speeding up construction time and promoting cost-savings.

Over the years, several works developed experimental studies aiming accurately evaluating the load capacity
and behavior of the CFST [2, 3] composite columns. These researches demonstrated that several factors directly
influence the structure’s load–carrying capacity and its behavior in general. Experimental research, in general,
requires a high cost. In this scenario, numerical analysis models are highlighted.

Refined plastic-hinge method (RPHM) is a simpler methodology to make advanced analysis of steel, rein-
forced concrete and steel concrete composite structures. The classical RPHM approach starts from a hybrid finite
element with pseudo-springs at the ends of the finite elements, such that the stiffness degradation of these springs is
responsible for introducing the material’s non-linearity under three regimes: linear-elastic, elastoplastic and plastic
[4]. The linear-elastic regime contradicts the non-linear behavior of concrete under compression, and there is no
consideration of cracking in this methodology. Thus, concrete cracking is introduced in approximate positions
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in the model through an empirical coefficient to reduce the stiffness of the concrete element [5–7]. To correct the
problems generated by the concrete cracking within the RPHM, Lemes et al. [8] proposed the explicit consideration
of cracking through the imposition of cracked and uncracked regimes within the interaction curves. Thus, when
the cracking starts, the moment of inertia of the cross-section is reduced as per Branson and Metz’s [9] equation.

The present study aims to develop a plastic-fiber-hinge-based numerical formulation for the non-linear sim-
ulation of CFST columns. For this, an important contribution of this study is to promote the coupling of the
co-rotational finite element using RPHM. To include concrete cracking here, second moment of area of the section
will be addressed via the Branson and Metz proposition [9]. On the other hand, the plastification effects will be
inserted through rotational pseudo-springs, which will introduce in the numerical model the loss of stiffness due
to the plastic behavior of steel and concrete. The cross-sectional analysis is done via strain compatibility method
[8, 10–12].

2 Co-rotational formulation

2.1 Element formulation

If the structural element presents large displacements and/or large rotations, the global degrees of freedom
contain the rigid motion and the deformational part; the co-rotational approach aims to separate these parts. This
approach is convenient for establishing the relationship between the local and global variables. The relation be-
tween global and local degrees of freedom is obtained by a simple differentiation of the co-rotational displacements
described in the function of global displacements.

Starting from the virtual work principle and correlating global and local variables using the transformation
matrix B [10], the differentiation of global forces vector, fg , in relation to the global displacements vector,ug ,
results in the global stiffness matrix, Kg . This matrix is described as follows:

Kg =
∆fg
∆ug

= BT KlB +
zzT

L
N +

1

L2

(
rzT + zrT

)
(Mi +Mj) (1)

where Kl, N , Mi and Mj are the stiffness matrix and the internal forces in the local system, respectively, L is the
finite element length, z and r are geometrical vectors. For more detail in how to obtain this matrix, see [11].

2.2 Stiffness Matrix in Local System (Kl)

Lower-order interpolation functions are associated with locking phenomena in displacement-based FE for-
mulations. Tang et al. [13] pointed out that membrane locking would arise when a straight beam-column element
with low-order axial displacement interpolation is used in the geometrical non-linear analysis.

Using the degenerated form of the Green strain and the curvature based on the Euler-Bernoulli theory, con-
sidering locking-free displacement interpolations functions [11], and assuming here the material elastic behavior
and that applied load is conservative and nodal, the system potential energy may be expressed by the strain energy
U and external work done W , that is,

Π = U −W =
1

2
EA

∫ L

0

ε2dx+
1

2
EI

∫ L

0

Φ2dx−
3∑

i=1

fl,iul,i (2)

where E is the modulus of elasticity and A and I are area and moment of inertia, respectively, ε is the axial strain,
Φ is the curvature and fl,i and ul,i are the nodal forces and displacements in local system. By the principle of
stationary potential energy, the first variation on the function yields the equilibrium equations, that is [13]:

∆Π =

(
∂U

∂ul
− fl

)
∆ul = 0 (3)

being the first variation of strain energy, U , resulting in the local internal forces vector, fl, as follows:

fl =
∂U

∂ul
(4)

and the local tangent stiffness matrix, Kl, is obtained as the second variation of strain energy, variation of fl as
follows:

Kl =
∂2U

∂u2
l

=
∂fl
∂ul

(5)
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3 Lumped plasticity approach

In the present work, the displacement-based formulation with concentrated plasticity in the nodal points is
applied. In this case, the axial and flexural stiffness degradation occurs exclusively at the FE nodes. Then, the
method is presented, introducing the material non-linearity only. Some considerations and simplifications of this
formulation can be seen in [8].

In the structural system modelling, the hybrid beam-column finite element of length L, delimited by nodal
points i and j (Figure 1), is used. This element has zero-length pseudo rotational springs at its ends, which are
responsible for the plasticity simulation by means of the parameter Sp, discussed in Section 4. The finite element
is referenced to the co-rotational system where the degrees of freedom are the rotations at nodes i and j, given by
θi and θj , and the axial displacement in j, δ. The terms Mi, Mj and N represent the bending moments and the
axial force in the respective degrees of freedom.

Pseudo springs
(Plasticity simulation)

Beam-column finite element

Cracking evaluation
(Branson’s proposition)

Spi Spj
Node i Node j

Mpi Mpj

N

Lspring → 0 L Lspring → 0

Figure 1. Finite element with pseudo-springs
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∆θpi
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in which β = (Spi + k22) (Spj + k33)− k32k23.
The terms k11, k22, k23, k32, and k33 are components of the beam-column stiffness matrix element, without

the pseudo-springs, described as [8]:

k11 =
EsA

L
k22 =

Es (3Ieff,i + Ieff,j)

L

k23 = k32 =
Es (Ieff,i + Ieff,j)

L
k33 =

Es (Ieff,i + 3Ieff,j)

L

(7)

where Es is the steel modulus of elasticity, A is the homogenized area of the section, Ieff is the modulus of inertia
as discussed on Section 5, measured in nodes i and j, and L is the finite element length.

4 Pseudo-spring flexural stiffness

The limits of uncracked, elastic or plastic states are defined by the moment-curvature relationship [12]. In this
non-linear procedure, the initial cracking moment Mcr, the initial yield moment Mer and the full yield moment
Mpr can be easily obtained.

Figure 2 illustrates three interaction curves for a specific cross-section: the full yield curve – indicates the
bearing capacity; the initial yield curve – defines the elastic region; and the initial cracking curve – delimits the
uncracked state of the cross-section. These curves are the result of a combination of axial force and a bending
moment acting around one of the main axes bending. For bare steel or steel-concrete composite columns, the
procedure to obtain these three curves is described in Lemes et al. [8].

In Figure 2, it is also possible to observe four regions. Thus, expression definitions for the simulation of
pseudo-spring stiffness in each of the described regions are required.

According to the classical RPHM, three equations define the pseudo-spring stiffness for the previously men-
tioned regions. In regions 1 and 2, it is observed that the section is in an elastic regime. In regions 3 and 4, there
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Foz do Iguaçu, Brazil, November 21-25, 2022



A refined plastic-hinge-based formulation for advanced analysis of CFST columns: a co-rotational proposition

1

2

3

4

5

Curves :

Full yield
Initial yield
Initial cracking

States:
1 - Elastic/uncracked
2 - Elastic/cracked
3 - Inelastic/uncracked
4 - Inelastic/cracked
5 - Fully plastified

M

N

Figure 2. Interaction curves for cross section flexural stiffness degradation

can be noticed that the section is in a stiffness degradation process due to plastic strains. And finally, for when the
fully plastified section occurs (region 5). For a given axial force-bending moment combination, Sp is defined as
follow:

if M ≤ Mer : Sp = 1× 1010

if Mer ≤ M ≤ Mpr : Sp =
EsIeff

L

(
Mpr −M

M −Mer

)
if Mpr ≤ M : Sp = 1× 10−10

(8)

in which L is the finite element length and EsIeff is the section’s flexural stiffness, considering the cracking, as
discussed below.

Note that, by the value described in Eq. 8, there is no possibility of simulating cracking in the elastic regime.
This adjustment is made in the following section.

5 Cracking effect in the concrete section

Branson and Metz [9] proposed a simple equation for the effective moment of inertia evaluation of RC
sections in a cracking state. According to these authors, the effective moment of inertia,Ieff,c, is given by:

if M ≤ Mcr : Ieff,c = Ic

if M > Mcr : Ieff,c =

(
Mcr

M

)3

Ic +

[
1−

(
Mcr

M

)3
]
Icr Ieff ≤ Ic

(9)

where Mcr and M are, respectively, the initial cracking bending moment and the bending moment acting on the
section, Ic is the moment of inertia of the gross section, and Icr is the cracked moment of inertia of the section
evaluated in the critical point of moment-curvature relationship [8].

In order to enable the application of a single moment of inertia for the three components of the cross-section
within the stiffness matrix, homogenization was carried out:

Ieff = Is +
Er

Es
Ir +

Ec

Es
Ieff,c (10)

where Er and Ir are the modulus of elasticity and the second moment of area of the reinforcement bars that may
be present in the concrete component; Es and Is are the same properties of the steel section, respectively; and
Ieff,c is the effective moment of inertia of the concrete considering the cracking effects.

It is noteworthy that the concrete’s modulus of elasticity, Ec, is obtained in a particular manner. When the
initial tangential elastic modulus (Eci), illustrated in Figure 3, is used as Ec, its value is overestimated. This is
because due to the non-linear behavior of concrete under compression, low strain rates imply a reduction in the
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modulus of elasticity. On the other hand, the use of the elastic secant modulus Ecsi, between 0 and (εcin, fcin)
[14], generates conservative results for low strain values. Accordingly, for the global structural analysis, Ec was
defined as the mean value between Eci and Ecsi. The values of εcin and fcin can be easily calculated considering
Hooke’s equation (fc = εEc) and constitutive relationship [6], resulting in εcin = εci/2 and fcin = 0.75fc. Thus,
Ec = 1.5fc/εci.

fcin

Ecsi

1

Eci

1

εc

σc

εcin εci εcu

fc

Figure 3. Concrete stress-strain relationship under compression: elastic limit strain and modulus of elasticity

Finally, after inserting the effects of yielding (through the refined plastic-hinge method) and cracking in the
stiffness matrix, it is possible to determine the force–displacement curve seeking the most convergent results for
the actual behavior of the structure.

6 Numerical applications

Seven tested steel–concrete composite columns [15] were simulated in this subsection. Some authors [5, 16]
used these experimental results to test their RPHM-based formulations. The simulated model consists of a simply
supported column without an initial geometric imperfection. A load eccentricity was introduced to the system
considering bending moments at both top and base of the column, as shown in Figure 4. Four finite elements were
used. The geometric and materials properties of each specimen are presented in Table 1.

Table 1. Coefficients in constitutive relations

Specimen L e d t fys Es fc Ptest Pp Pp

Ptestcm cm cm cm kN/cm2 kN/cm2 kN/cm2 kN kN

M1 332.74 4.76 16.94 0.511 30.9 20700 5.553 621.8 632.911 1.018
M2 332.74 3.81 16.92 0.526 30.9 20700 5.400 701.5 723.997 1.032
M3 332.74 4.76 16.89 0.566 29.5 20700 4.247 599.8 581.973 0.970
M4 332.74 4.76 16.84 0.655 29.8 20700 3.800 624.7 611.523 0.979
M5 332.74 4.76 16.94 0.719 31.2 20700 3.200 652.6 645.708 0.989
M6 332.74 3.81 16.94 0.729 31.2 20700 3.318 738.3 742.206 1.005
M7 330.20 4.76 16.89 0.881 32.3 20700 3.306 757.3 754.487 0.996

All columns were numerically simulated and in Figure 4, only the equilibrium path of the specimen M5
is illustrated, since it is the only curve provided by Neogi et al. [15]. This figure shows the proximity between
numerical and experimental results. It also verifies the agreement in the structure stiffness drop from the beginning
of the cracking process, which occurs when the load is equal to 231.849 kN. For this formulation, the section
yield process beginning when the load is equal to 458.78 kN. Another point to be highlighted is the precision
of the formulation in the evaluation of the structure’s post-critical behavior, which is compatible with what was
experimentally obtained. Table 1 also presents the critical loads obtained here, Pp, and they are compared with the
experimental results, Ptest. The table also compares the values of the loads obtained here with those found in the
literature. The low average difference, Ptest (0.1%), points to the reliability of numerical analyses presented for
CFST columns under axial force and bending moment.
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Figure 4. Concrete-filled circular hollow steel columns: equilibrium path of M5

7 Conclusions

The use of the refined plastic hinge method for steel-concrete composite structures is not new. The present
study proposed to include a precise approach to geometric non-linearity via co-rotational proposition. Furthermore,
the inclusion of cracking effects by Branson’s equation and the definition of a uncracked section is important
for the correct evaluation of the cross-sectional stiffness. The strain compatibility method produces a precise
cross-sectional analysis, where several conditions are analyzed: uncracked, cracked, elastic, inelastic and ultimate
strength. The interaction curves, built by a numerical method that explicitly considers the constitutive relationships,
are closer to reality since simplified equations are not used.

This article focused on the results of the analysis of seven CFST columns. The numerical results were
compared with experimental results [15]. In average, the results found present an error of 0.1% in relation to
the data obtained in the laboratory, demonstrating the accuracy of the formulation. Furthermore, it is possible to
observe a low standard deviation, showing the consistency of the formulation precision in all seven analyses.

With the consolidation of the data presented here, the aim is to expand the formulation to enable the anal-
ysis of steel-concrete composite frames with semi-rigid connections, in addition to including the effect of partial
interaction in this approach (considering the inclusion of conditions for the analysis of composite beams). Further-
more, objective is also to expand the formulation to the three-dimensional context, and to analyze the specificities
of different cross-sections.
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[8] Í. J. M. Lemes, R. C. Barros, R. A. M. Silveira, A. R. D. Silva, and P. A. S. Rocha. Numerical analysis of rc
plane structures: a concentrated nonlinear effect approach. Latin American Journal of Solids and Structures, vol.
15, n. 2, 2018.
[9] D. Branson and G. Metz. Instantaneous and time-dependent deflections of simple and continuous reinforced
concrete beams. Technical report, Auburn: Dept. of Civil Engineering Auburn Research Foundation, Auburn
University, Auburn: Dept. of Civil Engineering and Auburn Research Foundation, Auburn University, 1963.
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