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Abstract. Optimization consists of finding the best solution for a given objective, under given constraints. In
Engineering, the application of optimization algorithms has greatly developed in the last decades, but it faces
fundamental difficulties connected to the complexity of the mathematical models to be solved. In this last context,
optimizing structures tries to achieve a reduction of the structural cost, under the restriction of not compromising
efficiency and safety. This work aims to apply a heuristic optimization method — genetic algorithms (GA) — for
the determination of optimal aluminium truss structures, considering design constraints associated with minimum
areas and the maximum allowable stress. In this way, a computational routine is implemented in the MATLAB®

program, using the GA with the advanced structural analysis program, based on the Finite Element Method, named
CS-ASA (Computational System for Advanced Structural Analysis). MATLAB® manages all stages of the process,
from the internal call of the CS-ASA to carry out the structural analysis, to the application of the optimization
function, with the evaluation of the objective function and design constraints. Besides the analyses and comparison
with literature, it is shown how numerical strategies to make the process less computationally expensive influence
the total processing time.
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1 Introduction

Optimization techniques are powerful mathematical tools and potentially useful in many areas of knowledge.
In structural design engineering, especially, given the demands for increasingly economic structures and, of course,
with safety and durability properly assured, these techniques can be of great help to professionals in the area, in
their search for the best design.

Dede et al. [1] emphasize that there is a growing interest in using optimization algorithms for the design
of structures, especially in the last two decades. Modern methodologies, such as genetic algorithms, prove to be
efficient in the search for the global optimum, since, by generating a population of individuals, they sweep the
search space more broadly. It is used in several areas and problems, as in the work of Deligia et al. [2], who
used GA’s to optimize composite structures of concrete and steel in lattice format. The objective was to find the
minimum weight, considering the beam geometry elements as design variables.

Lage [3] performed the weight optimization of steel trusses, by genetic algorithms, from the coupled operation
of the programs ANSYS®-MATLAB ®, using first-order elastic analysis. The author emphasizes the computational
cost involved, a factor that can limit the efficiency of the method.

In this sense, the present work aims to perform the optimization via genetic algorithms of the mass of a truss
in aluminum material, through the coupled use of the programs CS-ASA (Computational System for Advanced
Structural Analysis) and MATLAB®. It is shown how the strategies to reduce the analysis time, such as parallel
computing and vectorization of functions, influence the process.
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2 Structural optimization

2.1 Initial notions

In general, mathematical optimization comprises maximizing or minimizing one or more objective functions,
within specific design conditions previously established [4]. In mathematical language, the optimization problem
can be formulated as follows:

Find X =
{

x1 x2 ... xn

}
, that minimizes f(X),

subject to:

ci(X) ≤ 0, i = 1, 2, ...,m, (1)
dj(X) = 0, j = 1, 2, ..., p, (2)

xlow
k ≤ xk ≤ xup

k , k = 1, 2, ..., n, (3)

where:
• X is the n-dimensional vector containing the design variables to be optimized;
• f (X) is the objective function of the problem, which in structural optimization, can represent the weight,

volume or manufacturing cost, for example;
• ci(X) and dj(X) are inequality and equality constraints, respectively;
• xlow

k and xup
k are the lower and upper bounds that design variables can assume;

• i, j, k, m, n and p are arbitrary values.
Regarding the design constraints of eqs. (1), (2) and (3), they can be divided into two distinct classes, namely:

i) behavior constraints (or functionality), which is related to the performance and limit states of the structural
system under study, represented in eqs. (1) and (2); ii) lateral constraint (or geometric), in which feasible physical
limits are considered, such as availability, manufacture, transport, etc., as shown in eq. (3) [5].

2.2 The Genetic Algorithms

Genetic algorithms are part of a set of so-called modern optimization methodologies [5], originally proposed
by Holland [6]. They are based on principles of nature, such as genetics and natural selection in the reproduc-
tion of species. As they are stochastic and gradient-free methods, they have good applicability in problems like
multi-objective optimization; problems with continuous and discrete variables together; when the functions are
discontinuous, or non-differentiable, as well as for non-convex design spaces. The basic terminology relevant to
genetic algorithms is presented:

• Objective function: is the function to be optimized;
• Penalty function: mathematical expression applied to the fitness value of an individual, calculated based on

the violation of the problem’s constraints;
• Fitness function: mathematical expression given by the sum of the objective and penalty functions, which

works as an indicator of the quality (fitness) of an individual to be the best solution to the problem. The
fitness function can assume the same value as the objective function;

• Individual: is a point (vector), containing the value of each one of the variables, to which the fitness function
is to be applied, getting a score as a result. It can also be called chromosome and, its entries, genes. Below
is a representation of this structure with the vector X:

X =
[
x1 x2 x3 ... xn

]
;

• Population: is the matrix of individuals. The user must specify a value p, for the population size. Therefore,
the population matrix will have dimension p× n, where n is the number of variables in the problem;

• Generation: each generation represents an iteration, in which a new population matrix will be created, by
applying the genetic operators, known as: selection, elitism, crossover and mutation;

• Diversity: is measured by the distance between individuals in a population. It is a property of great im-
portance in the performance of GA’s, since a greater diversity of the population means a greater scan of the
design space;

• Parents and Children: The GA’s, through the selection process, use the individuals with the best fitness
value of the current generation, called parents, to create those of the next iteration (children).

The flowchart in Fig. 1 outlines the running of genetic algorithms.
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Foz do Iguaçu, Brazil, November 21-25, 2022



L. Lecchi, F. Neves, R. Silveira, W. Ferreira, E. Cursi

Optimization by Genetic Algorithms

Create the initial population

Evaluates the population

Tolerances
met?

Elitism

Selection of individuals “parents”

Reproduction: crossover and mutation

RESULTS

no

yes

Figure 1. Genetic algorithms flowchart.

2.3 The CS-ASA and MATLAB® softwares coupling

MATLAB® manages all the steps of the optimization process, which are: opening CS-ASA, through the com-
mand “system(‘CS-ASA.exe’);”; the call of the chosen optimization algorithm, with its proper operating settings;
reading the output file (“FileOut.s”) with the results of the structural analysis from CS-ASA, to evaluate the be-
havior constraints; and writing the new input file to CS-ASA (neutral1.d), with the structural model containing the
new values of the optimized design variables. The steps described can be checked in Table 1.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Table 1. Command sequence for structural optimization.

Command sequence for structural optimization via Matlab® 

(genetic algorithms) 

 

1. Define n; (number of executions) 

2.  

3. Start of time counting; 

4.  

5. For i from 1 to n, do: 

6.  

7.      system('CS-ASA.exe'); (calls CS-ASA) 

8.  

9.      opts = optimoptions(@ga, ...); (set genetic algorithms options) 

10.  

11.      A = [...]; b = [...]; Aeq = [...]; beq = [...]; lb = [...]; ub = [...];  

12.      intcon = [...];  (set behavior and lateral constraints) 

13.  

14.      [x,fval] = ga(@Fobj,nvars,A,b,Aeq,beq,lb,ub,@nonlcon,intcon, opts); 

15.       (calls GA, performs the optimization and returns the variables  

16.                     X optimized and also the value of the objective function fval) 

                   (obs: the @ is used to call functions in files external to the 

                    main file (function handle)) 

17.  

18.      WriteFile1(X); (calls function that will rewrite the file for CS-ASA,  

19.      with the new X design variables) 

20.  

21. End-For 

22.  

23. Stop of time counting; 

 

3 Numerical example

3.1 General information

The numerical example of the 10 bars truss in Fig. 2 was implemented on a notebook with a Intel(R)
Core(TM) i7-7500U CPU 2.70 GHz processor and 16 GB of RAM. The optimization is carried out in such a
way to find the minimum mass of the structure, having the areas of the bars as design variables. This structure
has been studied by several researchers over the last few years, such as Olsen and Vanderplaats [7], Haftka and
Gürdal [8], Lombardi [9], Toğan and Daloğlu [10], Kaveh [11], Noii et al. [12], Lage [3], Singh and Kapania [13],
constituting a benchmark, for validation of optimization algorithms.
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Figure 2. 10-bars aluminium truss.
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• Material: Aluminium;
• Young’s Modulus: E = 68947.573MPa;
• Minimum area of bars: Amin = 0.645 cm2;
• Specific mass: ρalu = 2767.99 kg/m3;
• Maximum allowable stress in the bars: σmax = ±172.369MPa;
• First Order Elastic Analysis.

3.2 Optimization algorithm setting

Genetic algorithms were used to optimize the structure, contained in the Global Optimization Toolbox, of
MATLAB®, with the following specific settings:

• Population size for each generation (‘PopulationSize’): 200 individuals (default);
• Creation function (‘CreationFcn’): ‘gacreationuniform’ (default);
• Crossover function (‘CrossoverFcn’): ‘crossoverscattered’ (default);
• Mutation function (‘MutationFcn’): ‘mutationgaussian’ (default);
• Elite individuals (‘EliteCount’): 5% of population size;
• Maximum number of generations (‘MaxGenerations’): 50;
• Algorithm for handling nonlinear constraints (‘NonlinearConstraintAlgorithm’): ‘auglag’;
• Tolerance for objective function (‘FunctionTolerance’): 10−6;
• Tolerance for constraints (‘ConstraintTolerance’): 10−3;
• Use of vectorized functions (‘UseVectorized’): ‘true’;

3.3 Design variables

The variables are continuous, with the side bounds starting from the minimum required of 0.645 cm2 to the
value of 58.064 cm2. It stipulated the maximum value in order to simplify the optimization problem. Thus, the
problem is delimited between the following lateral constraints:

0.645 cm2 ≤ x1, x2, x3, ..., x10 ≤ 58.064 cm2.

3.4 Design constraints

Besides the lateral constraints of the previous item, there are also constraints of maximum tensile and com-
pressive stress in the bars:

T (X) =
|σi|

|σmax|
− 1 ≤ 0, with i = 1...10, (4)

where σi is the stress in bar i, given by the normal stress Ni divided by the area of bar xi:

σi =
Ni

xi
. (5)

3.5 Objective function

The calculation of the objective function M(X), which represents the minimum mass of the structure, is
given by eq. (6):

M(X) =

n=10∑
i=1

ρalulixi, (6)

where li is the length of the bar i.

3.6 Results

100 executions were performed, with a total analysis time of 7.5 minutes. The initial value of the variables
of 32.258 cm2 was adopted. 50 generations were stipulated for each objective function evaluation, but the genetic
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algorithm converged with less than 10 generations, every time.
Table 2 shows how the application of parallel computing or vectorization of functions, resources available

in the program MATLAB®, can rationalize the analysis time, representing a large gain the use of vectorization of
functions.

Table 2. Comparison of the time of an optimization run according to each strategy applied.

Strategy 
Time of 

analysis 

None ≅ 5 𝑚𝑖𝑛 
Parallel 

computing 
≅ 2 𝑚𝑖𝑛 

Vectorization ≅ 5 𝑠𝑒𝑐 

 

Table 3 shows the best, worst, mean and standard deviation for the 100 executions:

Table 3. Results.

Execution 
Mass 

(𝑘𝑔) 
𝑥1 

(𝑐𝑚2) 
𝑥2 

(𝑐𝑚2) 
𝑥3 

(𝑐𝑚2) 
𝑥4 

(𝑐𝑚2) 
𝑥5 

(𝑐𝑚2) 
𝑥6 

(𝑐𝑚2) 
𝑥7 

(𝑐𝑚2) 
𝑥8 

(𝑐𝑚2) 
𝑥9 

(𝑐𝑚2) 
𝑥10 

(𝑐𝑚2) 

Best 722.074 51.032 0.645 52.193 25.225 0.645 0.645 37.354 35.612 35.677 0.838 
Worst 769.701 50,516 10.387 52.903 15.612 9.225 10.387 38.322 34.838 21.870 14.709 
Mean 723.979 50,967 1.032 52.322 24.967 0.774 1.032 37.483 35.548 35.354 1.225 

Standard 

deviation 
5.711 0.903 1.419 0.903 1.483 0.903 1.419 1.225 1.225 2.129 2.064 

 

In Table 4, the best result found in this work is compared to that of Haftka and Gürdal [8], who used two
methodologies to solve the proposed problem: the FSD (Fully Stressed Design) and another based on the Optimal-
ity Criteria, by Berke and Khot [14].

Table 4. Comparison with the literature.

Bar 
Haftka and 

Gürdal (1991) 

Present  

work 

 
Area 

(𝒄𝒎²) 
Stress 

(𝑴𝑷𝒂) 
Area 

(𝒄𝒎²) 
Stress 

(𝑴𝑷𝒂) 
1 51.225 172.369 51.032 172.369 
2 0.645 107.420 0.645 124.106 
3 51.999 −172.369 52.193 −172.369 
4 25.419 −172.369 25.225 −172.369 
5 0.645 −0.069 0.645 −4.136 
6 0.645 106.179 0.645 123.623 
7 37.032 172.369 37.354 172.369 
8 35.935 −172.369 35.612 −172.369 
9 35.935 172.369 35.677 172.369 

10 0.645 −151.822 0.838 −170.852 
Mass (𝑘𝑔) 𝟕𝟐𝟐. 𝟔𝟔𝟑 𝟕𝟐𝟐. 𝟎𝟕𝟒 

∆(%) − 𝑓𝑜𝑏𝑗  𝟎. 𝟎𝟖% 
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4 Conclusions

As it can be seen, the genetic algorithms proved to be efficient in the search for the minimum mass of the
10-bar truss in Fig. 2, and its results are practically equivalent to those found in the literature. Also noteworthy
is the considerable improvement in the execution time of the analysis, from the use of the vectorization strategy,
available in the program MATLAB®.

Furthermore, given the stochastic nature of the method addressed, the number of runs performed directly
influences the statistical results, such as the mean and standard deviation shown in Table 3. Hence the importance of
introducing strategies that reduce the computational cost of the process. Finally, it is noteworthy that the definition
of lateral constraints (minimum and maximum) also helps in the proper functioning and achievement of results.
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