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Abstract. The paper presents a formulation for the local contact problem between smooth convex particles whose 

boundaries are defined by a set of non-uniform rational B-splines surfaces. By assuming a master-to-master 

approach for the contact and an optimization scheme, the maximum penetration between particles is a minimum 

of an objective function that gives a constrained distance between surfaces. This objective function is defined with 

the aid of the Minkowski sum, configuration space obstacle and support mapping, which are concepts usually 

employed on computer graphics. A numerical example shows the good behavior of the method in handling contact 

between generic particle shapes. Comments on the numerical problems that can arise when generating particle 

boundaries with multiple patches are also presented. 
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1  Introduction 

The discrete element method (DEM) can be used to study the mechanical behavior of particle systems. DEM 

was introduced by Cundall and Strack [1], and it describes the motion of each particle by the Newton-Euler 

equations. The interaction between particles is due to contact and, therefore, the method is extremely dependent 

on their geometry. More realistic geometries lead to better responses concerning the overall system behavior. 

However, the contact detection between complex geometries can be a hard-working task that demands high 

computing power. Precision and efficiency must then be balanced, which directly influences the choice of particle 

geometric features. 

Spheres, ellipsoids, superellipsoids, polyhedra, cluster and clump of spheres are common geometric 

simplifications employed in DEM simulations. Song et al. [2], for instance, use spheres to model particles. He et 

al. [3] perform simulations with ellipsoids. Wellmann, Lillie and Wriggers [4] work with superellipsoids. Gay 

Neto and Wriggers [5], in their turn, analyze polyhedral systems. Finally, cluster and clump of spheres are studied 

by Li and McDowell [6]. Another possible mathematical representation for the particle boundary is the non-

uniform rational B-splines (NURBS). They are very common in computer aided design (CAD), computer graphics 

and isogeometric analysis (IGA), but only recently they have been used in DEM simulations. Lim, Krabbenhoft 

and Andrade [7], Liu et al. [8] and Craveiro, Gay Neto and Wriggers [9] can be cited in this context. 

According to Wriggers and Avci [10], the contact detection is the main responsible for the efficiency of DEM 

simulations. So, it is usual to divide the process into local and global levels. The latter involves low-cost 

computational algorithms to eliminate improbable contact pairs, and the former uses more precise algorithms, 

which vary with particle geometry, to determine if the particles are in contact and, if so, which are the contact 

points and the corresponding gap or penetration. The local search for contact is applied only to pairs of particles 

found by the previous global search, and it is herein named as local contact problem (LCP). 

There are several techniques to solve contact. Lu, Third and Müller [11] present a review of contact detection 

between usual geometries. For more general ones and assuming a local quadratic approximation for surfaces, Gay 

Neto and Wriggers [12] treat the LCP as an optimization scheme. It is able to both detect contact and find the 

maximum penetration, which is a saddle point of the objective function. Concerning NURBS, Lim and Andrade 
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[13] use an intersection-based approach to study the contact between convex surfaces. Lim, Krabbenhoft and 

Andrade [7], in their turn, deal with non-convex NURBS using a master-to-slave contact formulation.  

The contact issue is not a concern only of computational mechanics. Computer graphics also deals with it, 

requiring fast processes. The Gilbert–Johnson–Keerthi (GJK) distance algorithm and the expand polytope 

algorithm (EPA) are examples of contact algorithms. Details can be found in Ericson [14] and van den Bergen 

[15]. Little exchange, however, can be found between both areas. 

Regarding the previous scenario, the objective of the work is to present a formulation for the LCP between 

smooth convex NURBS particles using a master-to-master contact approach, i.e., no contact points are chosen a 

priori. This approach, by the authors’ knowledge, has not been applied to NURBS yet. The formulation determines 

the maximum penetration between contacting particles, which is the basic quantity to evaluate the contact forces 

to be considered in the Newton-Euler equations. The contact detection is done previously by the algorithm given 

in Gay Neto and Wriggers [12]. In the same way as these authors, the maximum penetration is determined by an 

optimization scheme. However, this quantity is herein a minimum and not a saddle point. It is possible by using 

computer graphics concepts. The LCP formulation is implemented into the software Giraffe [16], which also 

allows us to perform DEM simulations. The NURBS surfaces are created in the software Rhinoceros 3D [17]. 

2  Modeling particles with non-uniform rational B-splines (NURBS) 

General surfaces can be mathematically defined by NURBS. The rational function 

𝒔(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝒑𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0

 (1) 

maps two parameters u and v into material points 𝐬(u, v) on surfaces, where Ni,p(u) and Nj,q(v) are piecewise 

polynomial basis functions with degrees p and q, 𝐩i,j are control points, wi,j are weights, n + 1 and m + 1 are the 

number of control points associated with u and v, respectively. Details on NURBS can be found in Piegl and Tiller 

[18]. 

Naming patch as a parameterization of a surface region, one can model the particle closed boundary with 

either only one or more patches. The first option leads to poles and seam on the surface, as depicted in Fig. 1a. 

Poles consist in material points associated with multiple pairs of parameters u and v. They imply null derivatives 

with respect to one of such parameters, which is undesirable in numerical processes. The seam, in its turn, defines 

at the same curve the beginning and the end of the parametric space in direction u or v. So, one has to properly 

handle the change of parameters. Modeling closed surfaces using multiple patches eliminates poles, as can be seen 

in Fig. 1b. The seam issue remains, but it is modified. It is not necessary to change parameters within the patch 

itself, but to change parameters between patches. The present work chose to model particles with multiple patches. 

It is important to advice that this strategy also presents problems, especially because the focus herein is on smooth 

convex particles. The connections between the patches are not always perfect and smooth. They can have 

geometric imperfections whose treatment is not straightforward. These imperfections are not scope of the paper. 

 
 

(a) (b) 

Figure 1. Modeling NURBS particles with (a) one patch (b) multiple patches 

3  Computer graphics 

Three computer graphics concepts need to be introduced in order to develop the LCP formulation: Minkowski 

sum, configuration space obstacle (CSO) and support mapping. 
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Consider two convex bodies A and B. The Minkowski sum A + B is the sum of all points 𝐱A belonging to A 

with all points 𝐱B belonging to B, as follows 

𝐴 + 𝐵 =  {𝒙𝐴 + 𝒙𝐵  | 𝒙𝐴 𝜖 𝐴, 𝒙𝐵  𝜖 𝐵}. (2) 

The CSO is the Minkowski sum A + (−B), and it gives distances between bodies. The boundary 

representation of the CSO is the convex hull of the set A + (−B). It is useful to check if the contact between A and 

B exists and, if so, to determine the maximum penetration. The contact exists if the CSO contains the origin, and 

the maximum penetration d(A, B) is the minimum distance between the CSO boundary and its origin, as follows 

𝑑(𝐴, 𝐵) = 𝑖𝑛𝑓 {‖𝒙𝐴−𝐵‖ | 𝒙𝐴−𝐵  𝜖 𝐴 − 𝐵}. (3) 

The support mapping is an implicit representation of a convex body geometry, which is defined as 

𝒅 ∙ 𝒎𝒂𝒑(𝒅) = 𝑚𝑎𝑥 {𝒅 ∙ 𝒙𝑤  | 𝒙𝑤  𝜖 𝑊}. (4) 

Given a direction 𝐝 and a body W, it returns 𝐦𝐚𝐩(𝐝), which is a point 𝐱w whose dot product with 𝐝 is 

maximum, i.e., the furthest point 𝐱w along that direction. For smooth bodies, the external normal of the body at 

𝐱w is parallel to 𝐝. 

The support mapping can be used to obtain points on the CSO boundary. For a given direction 𝐝,  

𝒎𝒂𝒑𝐴−𝐵(𝒅) = 𝒎𝒂𝒑𝐴(𝒅) −  𝒎𝒂𝒑𝐵(−𝒅), (5) 

which results from the application of two support mappings, one for each body to which the CSO refers. See Fig. 

2 for the geometric description of the support mapping. Note that, as we can find points on the CSO boundary, we 

can minimize the distance of these points to the origin, which results in the maximum penetration between bodies. 

  

Figure 2. Description of the support mapping for intersecting bodies A and B 

4  Local contact problem (LCP) 

Consider two convex particles modeled with multiple NURBS patches. If contact is established between 

them, only one pair of contacting points is to be found by a master-to-master contact approach. A strategy to detect 

such points is to test each patch of one particle against each patch of the other. As commented, efficiency can be 

improved by previously employing global contact search algorithms, such as bounding volumes, in order to 

eliminate pairs of patches that have no chance of contact. Consequently, the LCP will be solved only for those 

pairs of patches whose interaction is probable. 

Consider surfaces ΓA =  Γ̂A(ζA, θA) and ΓB =  Γ̂B(ζB, θB), whose parametrizations assume the form 

𝛤(ζ, θ) = 𝒙𝟎 + 𝑸𝟎𝒔(ζ, θ), (6) 

where ζ and θ are parameters (e.g., parameters u and v of NURBS), 𝐱0 represents a translation and 𝐐0 a rotation 

tensor. They represent patches of particles. For a frozen configuration of the system, defining the gap vector 𝐠 as 

𝒈 =  𝛤𝐴 − 𝛤𝐵 , (7) 

one may verify if two surfaces are in contact by minimizing the objective function  

𝑓1 =
1

2
‖𝒈‖2 =  

1

2
‖𝛤𝐴(𝜁𝐴, 𝜃𝐴) − 𝛤𝐵(𝜁𝐵 , 𝜃𝐵)‖2 (8) 

that defines the distance between them, as proposed by Gay Neto and Wriggers [12]. If the minimization leads to 

f1 > 0, there is no contact between the surfaces, and their distance is ‖𝐠‖. If f1 = 0, the surfaces are intersecting 

each other, and the maximum penetration is a saddle point of f1. The variables are the four convective coordinates. 
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It is possible to avoid the search for saddle points, which is not so straightforward as searching for minima, 

by writing a new objective function f2 based on the aforementioned computer graphics concepts. Since the CSO 

of surfaces ΓA and ΓB represents distances between them and the smallest distance between the CSO boundary and 

its origin is the maximum penetration, the idea is no longer to unrestrictedly minimize the distance between the 

two surfaces, but to minimize the distance between points on those surfaces that lead to the boundary of the CSO. 

For that, one may define the direction 𝐝 in the CSO in a spherical coordinate system as  

𝒅 = {𝑐𝑜𝑠 𝜌 𝑠𝑖𝑛 𝜑 , 𝑠𝑖𝑛 𝜌 𝑠𝑖𝑛 𝜑 , 𝑐𝑜𝑠 𝜑}, (9) 

where ρ and φ are the azimuth angle and the elevation angle, respectively. With that, f2 can be written as  

𝑓2 =
1

2
‖𝒈‖2 =  

1

2
‖𝛤𝐴(𝜁𝐴(𝜌, 𝜑), 𝜃𝐴(𝜌, 𝜑)) − 𝛤𝐵(𝜁𝐵(𝜌, 𝜑), 𝜃𝐵(𝜌, 𝜑))‖

2
, (10) 

in which the variables are no longer the four convective coordinates, but the angles that define the direction 𝐝 in 

spherical coordinates. So, the minimization of f2 leads to the direction of maximum penetration. The corresponding 

points on the surfaces can be obtained by applying the support mapping to the surfaces with that direction. The 

direction of maximum penetration is parallel to the gap 𝐠 and to the external normals of the surfaces at the 

corresponding points. Note that a common-normal approach is reached. 

To minimize f2, the trust-region Newton method is chosen. It approximates the objective function by a 

quadratic model and minimizes it within a region in which such approximation is acceptable. For that, the step-

length on the variables at each iteration is constrained. The process advances for the next iteration only if the 

objective function reduces within the current iteration and if the ratio between the actual and the approximated 

reductions respects preestablished limits. Nocedal and Wright [19] describe the numerical method in depth. 

Each iteration of the optimization process refers to a direction 𝐝. To find the corresponding convective 

coordinates ζA, θA, ζB and θB, it is necessary to apply the support mapping to surfaces ΓA and ΓB. These support 

mappings can be understood as another minimization problems by changing the sign of eq. (4). The objective 

functions to be minimized are  

𝑓𝑠𝑢𝑝𝐴 = −𝒅 ∙  𝒎𝒂𝒑𝐴(𝒅) = −𝒅 ∙  𝛤𝐴(𝜁𝐴 , 𝜃𝐴) and 𝑓𝑠𝑢𝑝𝐵 =  +𝒅 ∙  𝒎𝒂𝒑𝐵(−𝒅) = +𝒅 ∙  𝛤𝐵(𝜁𝐵 , 𝜃𝐵) (11) 

for surfaces ΓA and ΓB, respectively. One may impose the stationary conditions 

𝛻𝑓𝑠𝑢𝑝𝐴 =  𝒐2 and 𝛻𝑓𝑠𝑢𝑝𝐴 =  𝒐2, (12) 

respectively, to find the critical points. 

Regardless the optimization method, one has to evaluate the gradient and the Hessian of the objective function 

f2 for each iteration. Note that f2 is dependent on the convective coordinates, which, in their turn, are dependent 

on the angles ρ and φ. So, f2 is a composite function. By ordering the surface parameters as ζA = η1, θA = η2, 

ζB = η3 and θB = η4, the terms of the gradient and the Hessian of f2 are 

𝜕𝑓2

𝜕𝜌
=  

𝜕𝑓2

𝜕𝜂𝑖

𝜕𝜂𝑖

𝜕𝜌
,       

𝜕𝑓2

𝜕𝜑
=  

𝜕𝑓2

𝜕𝜂𝑖

𝜕𝜂𝑖

𝜕𝜑
, (13) 

𝜕2𝑓2

𝜕𝜌2
=  

𝜕2𝑓2

𝜕𝜂𝑖
2 (

𝜕𝜂𝑖

𝜕𝜌
)

2

+
𝜕𝑓2

𝜕𝜂𝑖

𝜕2𝜂𝑖

𝜕𝜌2
,       

𝜕2𝑓2

𝜕𝜑2
=  

𝜕2𝑓2

𝜕𝜂𝑖
2 (

𝜕𝜂𝑖

𝜕𝜑
)

2

+
𝜕𝑓2

𝜕𝜂𝑖

𝜕2𝜂𝑖

𝜕𝜑2
, (14) 

𝜕2𝑓2

𝜕𝜌𝜕𝜑
=  

𝜕2𝑓2

𝜕𝜂𝑖
2

𝜕𝜂𝑖

𝜕𝜌

𝜕𝜂𝑖

𝜕𝜑
+

𝜕𝑓2

𝜕𝜂𝑖

𝜕2𝜂𝑖

𝜕𝜌𝜕𝜑
. (15) 

The derivatives of the surfaces ΓA and ΓB with respect to their parameters are easily found by well-known 

algorithms described in Piegl and Tiller [18]. The derivatives of the surface parameters with respect to the angles 

ρ and φ, however, are not straightforward. They have to be obtained implicitly by differentiating eqs. (12) with 

respect to angles ρ and φ. The process results in the following linear systems 

𝜕(𝛻𝑓𝑠𝑢𝑝𝐴)

𝜕𝜌
=  𝒐2 and 

𝜕(𝛻𝑓𝑠𝑢𝑝𝐵)

𝜕𝜌
=  𝒐2, (16) 
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𝜕(𝛻𝑓𝑠𝑢𝑝𝐴)

𝜕𝜑
=  𝒐2 and 

𝜕(𝛻𝑓𝑠𝑢𝑝𝐵)

𝜕𝜑
=  𝒐2, (17) 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐴)

𝜕𝜌2
=  𝒐2 and 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐵)

𝜕𝜌2
=  𝒐2, (18) 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐴)

𝜕𝜑2
=  𝒐2 and 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐵)

𝜕𝜑2
=  𝒐2, (19) 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐴)

𝜕𝜌𝜕𝜑
=  𝒐2 and 

𝜕2(𝛻𝑓𝑠𝑢𝑝𝐵)

𝜕𝜌𝜕𝜑
=  𝒐2. (20) 

An initial estimate for direction 𝐝 is necessary to start the iterative process of minimizing f2. A suggestion is 

to use information of the intersection point found by minimizing f1. Thus, the initial direction 𝐝 can be the vector 

subtraction of the external normals to the surfaces ΓA and ΓB at the intersection point.  

Finally, it is worth mentioning that, if the surface parameters are out of their valid range during the 

optimization processes, it is possible to change patches by storing their connectivity information. 

The complete description of algorithms can be found in Craveiro, Gay Neto and Wriggers [9]. 

 

Remark 1: Contact between particles and planes. When dealing with the contact between particles and planes, 

the LCP is simplified, because the direction of maximum penetration is already known. It is the normal of the 

plane. So, it is enough to apply the support mapping to the particle and to project the point found on the plane. 

5  DEM simulation 

The LCP formulation is tested with a DEM simulation involving two NURBS particles. The particles are 

modeled with six NURBS patches whose basis functions are cubic polynomials for both directions of the 

parametric space. They are rigid and convex. The properties are indicated in Tab. 1. 

Table 1. Rigid body data and initial conditions of NURBS particles 

Particle Mass (kg) Inertia tensor 𝐉 (kg.m2) 𝐱0 (m) 𝐐0 

A 0.4874 [
1.0292 −0.0361 0.0243

−0.0361 0.9332 0.0915
0.0243 0.0915 0.7996

] . 10−7 (0, 0, 0.26) [
1 0 0
0 1 0
0 0 1

] 

B 0.4619 [
0.7675 0.0000 0.0000
0.0000 0.7862 0.0000
0.0000 0.0000 1.1259

] . 10−7 (0.018, 0.015, 0.330) [
1 0 0
0 1 0
0 0 1

] 

* J is provided with respect to local barycentric axes 

 

The simulation is performed with the aid of the software Giraffe [16], which deals with rigid bodies and has 

a master-to-master contact structure based on Gay Neto and Wriggers [20]. The contact is enforced by the penalty 

method, with normal penalty parameter ϵn = 108 N/m  and tangential penalty parameter ϵt = 107 N/m. Damping 

is considered for contact both between particles and between particle and plane, with normal damping parameter 

cn = 105 N. s/m. The Coulomb’s friction model is assumed to rule the tangential interaction between bodies. The 

coefficient of friction is 0.3. The equations of motion are integrated over time by the Newmark implicit method. 

The total time of the simulation is 3 s. The initial time step is 0.001 s. See Gay Neto and Wriggers [20] for complete 

formulations.  

At time t = 0 s, the particles are released from a certain height onto a plane located at coordinates (0,0,0.2). 

Under gravity, with magnitude 9.81 m/s2, the particles first contact each other before contacting the plane. The 

initial configuration of the system is illustrated in Fig. 3 as well as the main configurations related to contact 

events. 



Template file for CILAMCE-2022 full-length paper (double-click here to enter the short title of your paper) 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu, Brazil, November 21-25, 2022 

After the initial collisions, which dissipate energy of the system, the movement of the particles on the plane 

is predominantly characterized by rolling, with no sliding. As the Coulomb’s limit is not reached and no other 

sources of energy dissipation are considered in the model, no energy dissipation occurs at this stage of the 

simulation. Fig. 4 shows the system energy over time. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. System configurations at (a) t = 0 s (b) 0.065 s (c) 0.07963 s (d) 0.21769 s 

 

Figure 4. System energy over time 

Observe that the proposed LCP formulation properly captures the mechanical behavior of the particle system, 

in view of the assumptions made. 

6  Conclusions and future works 

The present paper described the LCP formulation between NURBS particles in the context of a master-to-

master contact approach. Using concepts from computer graphics and an optimization scheme, it is possible to 

determine the maximum penetration between contacting particles as a minimum of an objective function based on 

a constrained distance. A numerical example, in which the particles are modeled with multiple NURBS patches, 

showed that the formulation is able to deal robustly with the contact between generic smooth convex surfaces, 

capturing the expected qualitative mechanical behavior of the system.  

Despite the robustness of the method, it is important to highlight that its computational cost still needs to be 

tested and optimized. This is because the method involves the solution of two optimization problems: the main 

problem of searching for maximum penetration and the application of support mappings to surfaces at each 

iteration of the main scheme. The iterative solution of these problems are cumbersome processes. The greater the 



F. Author, S. Author, T. Author (double-click to edit author field) 

CILAMCE-2022 

Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

number of particles, the higher the computational cost. So, larger systems still have to be investigated. 

Another point to be commented is that the method is developed based on concepts of computer graphics that 

are valid for convex shapes. So, the generation of the particle geometry must be perfect, without imperfections. In 

practice, this is not always possible with multiple patches. The connection between them, mainly the connection 

between three patches, may have local geometric imperfections, such as local concavities. At such regions, the 

LCP may fail, interrupting the numerical process. A possibility to overcome undesirable stops of DEM simulations 

is to impose points at the connections between patches to be candidate to contact. With that, there is a reduction 

of the number of variables of the LCP. This is very similar with the procedure named as degeneration by Gay Neto 

and Wriggers [21]. As future works, the idea is to deal with both local imperfections and imposed singularities at 

the connection between patches through degeneration technique. 
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