
Approximating the operator of the wave equation using deep learning

Ziad Aldirany1, Régis Cottereau2, Marc Laforest1, Serge Prudhomme1

1Département de mathématiques et de génie industriel, Polytechnique Montréal
Montréal, H3T 1J4, Québec, Canada
ziad.aldirany@polymtl.ca, marc.laforest@polymtl.ca, serge.prudhomme@polymtl.ca
2Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire de Mécanique et d’Acoustique UMR 7031
Marseille, France
cottereau@lma.cnrs-mrs.fr

Abstract. Deep operator networks (DeepONets) have demonstrated the capability of approximating nonlinear
operators for initial- and boundary-value problems. One attractive feature of DeepONets is their versatility since
they do not rely on prior knowledge about the solution structure of a problem and can thus be directly applied to
a large class of problems. However, convergence in identifying the parameters of the networks may sometimes be
slow. In order to improve on DeepONets for approximating the wave equation, we introduce the Green operator
networks (GreenONets), which use the representation of the exact solution to the homogeneous wave equation in
term of the Green’s function. A comparison between the GreenONets and the DeepONets is shown on a series of
numerical experiments for homogeneous and heterogeneous medias.

Keywords: Deep learning, Wave equation, Deep operator networks, Physics-informed neural networks

1 Introduction

In the last few years, a large amount of work, such as Jin et al. [1], Bihlo and Popovych [2], Pettit and Wilson
[3], Moseley et al. [4], has been devoted to using deep learning methods for the solution of PDE-based problems,
such as in fluid dynamics, acoustics, meteorology, etc. These works have been motivated by the ability of deep
neural networks to approximate a large class of functions in high dimension over complicated domains.

Prominent deep learning methods for the solution of partial differential equations rely on either learning the
solution function of the problem, as presented by Raissi et al. [5], Weinan and Yu [6], Sirignano and Spiliopoulos
[7], or learning the operators that describe the physical problem, as introduced in Lu et al. [8], Li et al. [9, 10], Wang
et al. [11]. Using these methods, the network is trained based on the physics of the problem, in the sense that it
verifies the partial differential equations (along with boundary and initial conditions), and not solely on data. In
the first approach, the solution is approximated with a neural network by minimizing the residual of the PDE, e.g.
physics informed neural networks introduced by Raissi et al. [5]. The most common approach is to calculate the
residual from the strong form of the PDE, which is evaluated using automatic differentiation. The second approach
learns the differential operator for a given family of parameters, e.g. deep operator networks (DeepONets) as
presented in Lu et al. [8], thus allowing one to subsequently approximate the solution to a physical problem for
a specific parameter in the vicinity of the trained parameters. The training of this neural network is usually very
expensive, but needs to be done only once. Obtaining the solution for a new parameter requires only one forward
pass in the online phase, which is usually cost-effective. This makes the operator approximation method attractive
when the physical problem should be solved for a family of parameters. For example, in seismology, uncertainties
of the earth properties require thousands of simulations to obtain a solution that describes well the recorded data.

Solution of the wave propagation problem, which has been of great interest in several areas such as seismol-
ogy, electromagnetism, or fluid dynamics, remains challenging using classical methods (such as finite elements,
spectral methods, etc.). In this work, we will consider in particular the one-dimensional wave equation with ho-
mogeneous Dirichlet boundary conditions. Let Ω be an open domain in R, with boundary ∂Ω, and assume c(x) is
a known function. Given u0(x), u1(x), and T > 0, we want to find u(x, t), for all x ∈ Ω and t ∈ (0, T) such that

∂ttu(x, t)− c(x)2∂xxu(x, t) = 0, ∀(x, t) ∈ Ω× (0, T), (1)

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022

Approximating the operator of the wave equation using deep learning Green operator networks instead?

subjected to the initial and boundary conditions

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), ∀x ∈ Ω, (2)
u(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T). (3)

In this work, we propose a novel architecture, inspired by the deep operator networks, for approximating the
differential operator in the wave equation. The so-called Green operator networks (GreenONets) is based on the
representation of the exact solution to the homogeneous wave equation on unbounded domains in terms of the
Green’s function, for details we refer the readers to Duffy [12]. Using this architecture, we can train the network
for a family of initial conditions taking into account the governing equation and the boundary and initial conditions,
i.e. without any solution data. We will show on a series of numerical examples involving the homogeneous and
heterogeneous wave equations, that the approximation of the operator using GreenONets exhibits better results in
terms of accuracy and convergence.

2 Deep operator networks

We briefly review the deep operator networks first introduced by Lu et al. [8]. In this work, we will be
learning the operator from the partial differential equation and the initial-boundary conditions. In other words, the
physics-informed DeepONets, described in Wang et al. [11], will be presented.

A neural network maps an input into an output by a composition of linear and nonlinear functions, with
adjustable weights, with the goal of minimizing the error between an output and a target function on a specific
training set. Therefore the network is trained by adjusting its weights in order to better describe the target function
on the training set, in the hope of generalizing the output function to a wider set of input. In this section, we will
introduce the feedforward neural network (FNN), that will be used later in the DeepONets and GreenONets. Let us
consider a FNN with d layers, each layer having a width Ni, and let N0 denote the size of the input data. Denoting
the activation function by σ, the neural network with input x and output u is defined as

Input layer: x0 = x,

Hidden layers: xi = σ(W ixi−1 + bi), i = 1, · · · , d− 1,

Output layer: u = W dxd−1 + bd,

(4)

where W i is the weights matrix of size Ni×Ni−1 and bi is the biases vector of size Ni. When convenient, we will
combine the weights and biases into the single parameter Θ of the neural network. In this work, we shall consider
the tanh activation function, but other activation functions could be used as well.

The deep operator networks, first introduced by Lu et al. [8], aim at approximating nonlinear operators for
parametric partial differential equations. The method seeks to learn the operator for a family of parameters, such as
those provided in the initial or boundary conditions, domain properties, source term, etc. More precisely, for given
Banach spaces U and S, we learn the operator G : S → U such that for any input parameter s ∈ S, u ≡ G(s) ∈ U
is the solution to a given initial boundary-value problem.

Let Ω be an open domain in Rd with boundary ∂Ω. We write the partial differential equation in terms of its
associated residual as

R

(
x, G(s),

∂|k|G(s)

∂xk
; s

)
= 0, ∀x ∈ Ω, (5)

with the boundary condition
B(x, G(s); s) = 0, ∀x ∈ ∂Ω. (6)

For time-dependent problems, by considering the time as a component of x, initial conditions can be specified
within B as special boundary conditions. In order to approximate the operator G, we present the unstacked
DeepONets architecture originally introduced in Lu et al. [8] and schematically shown in Fig. 1. We start by
defining the input function s as a discrete vector [s(xi)]i=1,...,m evaluated at a collection of points {xi}mi=1, known
as sensors. Then, as illustrated in Fig. 1 the operator is approximated as

Ĝ(s)(x) =

q∑
k=1

bk
(
s(x1), . . . , s(xm)

)
tk(x), (7)

where {bk}qk=1 is the output of the branch network that takes s as an input and {tk}qk=1 is the output of the trunk
network that takes x as an input. Here, we will consider a simple FNN for both the branch and trunk networks.

We consider here the physics-informed DeepONets presented in Wang et al. [11], where the network is
trained by penalizing the residual R associated with the governing partial differential equation and the residual

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022

Z. Aldirany, R. Cottereau, M. Laforest, S. Prudhomme

DeepONet

s

b1

.

.

.
bq

Branch Net

x

t

t1

.

.

.
tq

Trunk Net

× Ĝ(s)(x, t)

R
(
Ĝ(s)

)

B
(
Ĝ(s)

)

PDE

BC&IC

Loss
Min.

Θ∗

Figure 1. Illustration of the architecture of the unstacked DeepONets.

B associated with the initial and boundary conditions. In order to define the training set, on which we want to
minimize our residuals, we start by defining a family of input functions {s(i)}Ni=1. For each input function s(i),
a collection of points {x(i)

b,j}Pj=1 is randomly sampled on the boundary ∂Ω, where the initial-boundary conditions

residual are penalized. Similarly, a set of points {x(i)
r,j}

Q
j=1 is randomly sampled in the domain Ω, where the

residual of the PDE are be minimized. Finally, the loss function is defined as

L(Θ) = wrLr(Θ) + wbLb(Θ), (8)

where

Lr(Θ) =
1

NQ

N∑
i=1

Q∑
j=1

∣∣R(
x
(i)
r,j , Ĝ(s(i))(x

(i)
r,j)

)∣∣2,
Lb(Θ) =

1

NP

N∑
i=1

P∑
j=1

∣∣B(
x
(i)
b,j , Ĝ(s(i))(x

(i)
b,j)

)∣∣2,
and wr and wb are the weighting coefficients.

3 Green operator networks

The architecture presented in the DeepONets is a general architecture that works well for different initial
boundary-value problems with different input parameters. Our objective here is to develop an approach that im-
proves upon the efficiency of the DeepONets. We will focus on the solution of the wave equation in one dimension
domains for homogeneous and heterogeneous materials, as presented in the Introduction. We thus propose the
Green operator networks (GreenONets), that approximate the Green’s function of the operator, to solve aforemen-
tioned problem.

The exact solution of the wave equation in unbounded domains with homogeneous properties, i.e. c(x) = c,
can be obtained with Green’s function g. The exact solution is then given by

u(x, t) = − 1

c2

∫
R
∂τg(x, t, ξ, τ)|τ=0u0(ξ)dξ +

1

c2

∫
R
g(x, t, ξ, 0)u1(ξ)dξ. (9)

In our case, the Green’s function is derived as

g(x, t, ξ, τ) = − c

2
H[c(t− τ)− |x− ξ|], (10)

where H is the Heaviside function. Similar solutions for the homogeneous wave equation can be found in Duffy
[12] or Kausel [13] for higher dimensions and bounded domains.

In this work, we are interested in learning the operator of the wave equation for different initial conditions, i.e.
the input function is defined as s = u0. Therefore, instead of using a general architecture as the DeepONets, we
introduce the Green operator networks, shown in Fig. 2, as a discrete approximation of the first integral in eq. (9).
The GreenONet is defined as

Ĝ(s)(x) =
1

m

m∑
i=1

s(xi)H(x,xi), (11)

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022

Approximating the operator of the wave equation using deep learning Green operator networks instead?

GreenONet

x

t

xi

FNN

H(x, t, xi) ×

s(xi)

Ĝ(s)(x, t)
Avg.

R
(
Ĝ(s)

)

B
(
Ĝ(s)

)

PDE

BC&IC

Loss
Min.

Θ∗

Figure 2. Illustration of the architecture of the GreenONets. A FNN takes as inputs the coordinates and sensor
points and outputs an approximated Green’s function H for each sensor point. Then, the operator is computed
by averaging the product of the Green’s function and the input function over the sensor points. Here, x = (x, t).
The network is then trained to minimize the loss function that consists of the residuals associated with the partial
differential equation and the initial and boundary conditions.

where H is a simple FNN. We note that the formulation of GreenONets depends explicitly on the sensor points
{xi}mi=1. Moreover, the sensor points can be varied without deteriorating the solution, which makes it possible to
add new sensor points throughout the training. However, in this work we will only focus on fixed sensor points.

Although the exact solution presented in eq. (9) is only valid for a homogeneous material and an unbounded
domain, the following numerical results show that GreenONets yield better results when compared to DeepONets
for bounded domains with homogeneous or heterogeneous properties.

4 Numerical results

In this section, we approximate the operator of the one-dimensional wave equation for homogeneous and het-
erogeneous materials in the case of a family of initial conditions, in order to show the effectiveness of GreenONets
when compared to DeepONets. We consider Ω = (−1, 1) and T = 2 and we set u1(x) = 0 in all cases. The loss
function is defined by

L(Θ) = wrLr(Θ) + wicLic(Θ) + wbcLbc(Θ), (12)

where

Lr(Θ) =
1

NQ

N∑
i=1

Q∑
j=1

∣∣∣∣∂ttĜ(
si
)(
x
(i)
r,j , t

(i)
r,j

)
− c

(
x
(i)
r,j

)2
∂xxĜ

(
si
)(
x
(i)
r,j , t

(i)
r,j

))∣∣∣∣2,
Lic(Θ) =

1

NP

N∑
i=1

P∑
j=1

∣∣∣∣Ĝ(
si
)(
x
(i)
ic,j , 0

))
− u0(x

(i)
ic,j)

∣∣∣∣2 + ∣∣∣∣∂tĜ(
si
)(
x
(i)
ic,j , 0

))
− u1(x

(i)
ic,j)

∣∣∣∣2,
Lbc(Θ) =

1

NP

N∑
i=1

P∑
j=1

∣∣∣∣Ĝ(
si
)(
x
(i)
bc,j , t

(i)
bc,j

))∣∣∣∣2.
Here, wr, wic, and wbc are the weighting coefficients. The initial conditions s(i) are randomly sampled from
a Gaussian random field (GRF), as presented by Lu et al. [8], with a defined length scale l. For each s(i), we
randomly define

{
x
(i)
ic,j

}P

j=1
at t = 0,

{(
x
(i)
bc,j , t

(i)
bc,j

)}P

j=1
on the boundary of the domain at different times, and{(

x
(i)
r,j , t

(i)
r,j

)}Q

j=1
on (−1, 1)× (0, T). In the following experiments, the FNNs in the DeepONets and GreenONets

are defined with d = 6 layers and Ni = 50 for all hidden layers. The loss function is minimized using the ADAM
optimizer, introduced by Kingma and Ba [14], using the default parameters, while considering different learning
rates for each experiment.

4.1 Homogeneous case with a length scale of 0.5

We start with approximating the operator for a homogeneous material using DeepONets and GreenONets.
The sensor points are chosen uniformly with m = 21 while the input functions s are generated using a GRF with

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022

Z. Aldirany, R. Cottereau, M. Laforest, S. Prudhomme

Figure 3. The evolution of the loss function on the training and testing sets during the training with GreenONets
and DeepONets for the example of Section 4.1.

a length scale l = 0.5. We take the initial learning rate as 10−3 and let it decrease with a rate of 0.9995 at each
epoch. In this example, we choose N = 1000 and P = Q = 10. The weights in eq. (12) are set to wr = 0.1 and
wic = wbc = 10. The training is done for 5000 epochs with 16 mini-batches.

Figure 3 compares the loss function during the training and test sets for the GreenONets and DeepONets.
We observe that with GreeONets the loss functions decrease faster and after 5000 epochs we have smaller losses
when compared to the DeepONets loss functions. In order to verify our operators, we will compute the solution at
T = 2 for the initial conditions u0(x) = (1− x2)k, with k = 2 and k = 10, as shown in Fig. 4 (left). We observe
in Fig. 4 (middle), that the pointwise error at T = 2 for k = 2 is slightly larger when using DeepONets. However,
as shown in Fig. 4 (right), for k = 10 the DeepONets solution exhibits a maximum pointswise error of 0.14 while
the maximum pointwise error for the GreenONets solution is 0.04. Therefore, we observe that the GreenONets
solutions generalize better for higher frequencies.

Figure 4. Example of Section 4.1: (left) Initial conditions with which we test the networks. (middle) Pointwise
error at T = 2 for k = 2 using GreenONets and DeepONets. (right) Pointwise error at T = 2 for k = 10 using
GreenONets and DeepONets.

4.2 Homogeneous case with a length scale of 0.1

Here, we solve the same problem as in the last section but the input functions s are defined using a GRF with
a length scale l = 0.1. In other words, we now compare the two methods for higher frequency solutions. The
sensor points are defined uniformly with m = 60. We initialize the learning rate to 5 × 10−4 and let it decrease
with a rate of 0.999 each epoch. In this example, we take N = 3000, Q = 30, and P = 3. The loss functions
weights are wr = 0.2 and wic = wbc = 100. We train both networks for 2000 epochs with 128 mini-batches.

We observe in Fig. 5 (left) that with similar hyper-parameters the loss functions of the GreenONets attain
8×10−2 in 2000 epochs while those of the DeepONets plateau earlier. In Fig. 5 (middle), we exhibit the pointwise
errors of the GreenONets solutions for u0 = (1− x2)k, with k = 50 and k = 200. The maximum pointwise error
is around 0.01 for k = 50 and around 0.1 for k = 200. We do not present the pointwise error of the DeepONets
solutions since the loss functions did not converge. To better characterize the error for k = 200, we compare the

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022

Approximating the operator of the wave equation using deep learning Green operator networks instead?

Figure 5. Example of Section 4.2: (left) Evolution of the loss function on the training and testing sets with
GreenONets and DeepONets. (middle) Pointwise error at T = 2 for k = 50 and k = 200 using GreenONets.
(right) Comparison of the solution obtained by GreenONets at T = 2 for k = 200 with the exact solution.

solution using GreenONets to the exact solution at T = 2 in Fig. 5 (right). We remark that the large errors are
close to the propagating wave and did not spread in the rest of the solution.

4.3 Heterogeneous case with a length scale of 0.3

The Green’s function is usually presented for the homogeneous wave equation. However, in this section, we
use the GreenONets to approximate the operator of the heterogeneous wave equation. First, we define c(x)2 =
1 +H(x− 0.5), where H is the Heaviside function. The input parameters are defined with a length scale l = 0.3.
We define the sensor points uniformly with m = 30. The learning rate is 10−3 and has a decay rate of 0.9995 per
epoch. We set N = 2000, Q = 15, and P = 3. The weights of the loss functions are wr = 1 and wic = wbc = 100.
We divide our training set to 32 mini-batches and we train our networks for 2500 epochs.

Figure 6. Example of Section 4.3: (left) Evolution of the loss function on the training and testing sets with
GreenONets and DeepONets. (middle) Pointwise error at T = 1 for k = 10, using GreenONets and DeepONets.
(right) Comparison of the solutions obtained by GreenONets and DeepONets at T = 1 for k = 10 to the exact
solution.

As shown in Fig. 6 (left), the loss functions on the training set and the testing set decrease faster using
GreenONets, when compared to DeepONets, and the loss after 2500 is smaller. Figure 6 (middle) shows the
pointwise error in the solution at T = 1 using GreenONets and DeepONets with an initial condition u0 = (1 −
x2)10. The maximum pointwise errors are similar for both networks with a value close to 0.035. In order to
analyze the errors, we plot the solutions at T = 1 along with the exact solution in Fig. 6 (right). We remark that the
errors in the solution of the GreenONet remain localized around the main pulses and are proportional to the wave
amplitude. However, in the case of DeepONets, the pointwise errors have the tendency to spreak over the whole
domain. Therefore, we may conclude that GreenONets tend to provide better approximations of the propagating
waves without introducing large errors away from the main pulses.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Foz do Iguaçu, Brazil, November 21-25, 2022

Z. Aldirany, R. Cottereau, M. Laforest, S. Prudhomme

5 Conclusions

We conclude that the Green operator networks show better results, when compared to the Deep operator
networks, when approximating the wave operator for homogeneous and heterogeneous domains. We showed that
the loss functions of the GreenONets always converge with fewer epochs. The numerical results also showed
that the pointwise errors are generally smaller with GreenONets and that the solutions generalize better for higher
frequencies. Finally, we observed that the errors were localized around the peak amplitudes with GreenONets
while the errors with DeepONets were randomly distributed in the domain. For future work, we want to test the
GreenONets for higher dimensions and for materials with various heterogeneous properties within the domain.

Acknowledgements. SP and ML are grateful for the support from the Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grants [grant numbers RGPIN-2019-7154, PGPIN-2018-06592]. This
research was also partially supported by an NSERC Collaborative Research and Development Grant [grant number
RDCPJ 522310-17] with the Institut de Recherche en Électricité du Québec and Prompt.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. Nsfnets (navier-stokes flow nets): Physics-informed neural
networks for the incompressible navier-stokes equations. Journal of Computational Physics, vol. 426, pp. 109951,
2021.
[2] A. Bihlo and R. O. Popovych. Physics-informed neural networks for the shallow-water equations on the
sphere. Journal of Computational Physics, vol. 456, pp. 111024, 2022.
[3] C. L. Pettit and D. K. Wilson. A physics-informed neural network for sound propagation in the atmospheric
boundary layer. In Proceedings of Meetings on Acoustics 179ASA, volume 42, pp. 022002. Acoustical Society of
America, 2020.
[4] B. Moseley, A. Markham, and T. Nissen-Meyer. Solving the wave equation with physics-informed deep
learning. arXiv preprint:2006.11894, 2020.
[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computa-
tional Physics, vol. 378, pp. 686–707, 2019.
[6] E. Weinan and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, vol. 6, n. 1, pp. 1–12, 2018.
[7] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations.
Journal of Computational Physics, vol. 375, pp. 1339–1364, 2018.
[8] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via deeponet based on
the universal approximation theorem of operators. Nature Machine Intelligence, vol. 3, n. 3, pp. 218–229, 2021.
[9] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier
neural operator for parametric partial differential equations. arXiv preprint:2010.08895, 2020a.
[10] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural
operator: Graph kernel network for partial differential equations. arXiv preprint:2003.03485, 2020b.
[11] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differential equa-
tions with physics-informed deeponets. Science Advances, vol. 7, n. 40, pp. eabi8605, 2021.
[12] D. G. Duffy. Green’s functions with applications. Chapman and Hall/CRC, Boca Raton, FL, 2001.
[13] E. Kausel. Fundamental Solutions in Elastodynamics - A Compendium. Cambridge University Press, 2006.
[14] D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022

	Introduction
	Deep operator networks
	Green operator networks
	Numerical results
	Homogeneous case with a length scale of 0.5
	Homogeneous case with a length scale of 0.1
	Heterogeneous case with a length scale of 0.3

	Conclusions

