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Abstract. In the past decades, response reanalysis techniques have been widely used to predict the dynamic effects 

of localized structural modifications, for they offer the advantage of circumventing the need to reprocess the whole 

set of information relative to the system of concern at each modification stage. Some recent works addressed the 

issue of evaluating the effects of inserting a viscoelastic dynamic neutralizer into a primary system by means of 

reanalysis, but none of them tackled the problem of finding the optimum modal parameters for the device based 

on these techniques. In this context, the present work aims to investigate the use of two response reanalysis 

techniques - in matrix formulation - to iteratively predict the response of the modified system after alterations in 

the parameters of a single-degree-of-freedom neutralizer, which provides a convenient method to find the optimal 

modal characteristics for the device. The considered primary system consists of a cantilever steel beam, the 

vibrations of which are meant to be kept under control. A finite-element model for the beam is implemented and 

a combination of a genetic algorithm and a local Nelder-Mead technique is used to ensure that global minimum 

vibration levels are achieved. The results show promising evidence for generalizing the use of the technique to 

multiple-degree-of-freedom devices and for applying the method to specific, large scale systems, such as overhead 

transmission line conductor cables. 

Keywords: Response reanalysis, Finite-element model, Viscoelastic dynamic neutralizer, Broadband vibration 

control. 

1  Introduction 

Keeping vibration levels under control in a specific mechanical system (the primary system) is the main objective 

of dynamic vibration neutralizers (DVNs). One of its most often quoted applications is in vibration control of 

overhead transmission line conductor cables, in the form of the so-called Stockbridge damper and other less 

popular devices ([1], [2]). A special class within the DVNs consists of viscoelastic dynamic neutralizers (VDNs), 

which, by the addition of viscoelastic elements, provide enhanced energy dissipation properties. 

The insertion of a DVN can be regarded as a structural modification, as they are amenable to treatment by 

reanalysis methods ([3], [4]). These may be classified - according to what they primarily handle - as modal models 

(with its corresponding modal properties) or response models (via the relevant frequency response functions, 
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FRFs) of a structure, either based on exact algebra or approximate representations ([5]). 

Recently, Soares [6] and Soares and Lopes [7] employed exact response reanalysis methods in evaluating the 

insertion of a generic VDN (designed with the aid of LAVIBS-ND®, a specialized software for optimizing VDNs 

via a modal approach) into a cantilever beam, showing that the prediction of the effects of changing the dynamics 

of the primary system provided by those reanalysis methods is exact and reliable. 

In Lopes [8], the matrix product method was adopted for analyzing modifications by viscoelastic devices in an 

aluminum frame, considering both numerical and experimental responses. On the other hand, in Rodrigues [9], 

using the matrix partition method, a multi-degree-of-freedom (MDOF) VDN was designed to reduce vibration in 

a wide frequency range in a cantilever beam. In the latter, a geometry for the VDN was assumed a priori, and an 

optimization procedure provided the optimal values for its relevant physical characteristics. 

The present work aims to show that the two response reanalysis methods mentioned above are convenient 

alternatives to the modal approach, as they can correspondingly and successfully provide the optimal modal 

characteristics for a single-degree-of-freedom (SDOF) NDV inserted into a given primary system. 

2  Designing the neutralizer 

In general, for an MDOF mechanical system, the matrices [𝑆̅(𝜔)] relating the generalized displacement vector to 

the generalized force vector are known as dynamic stiffness matrices. They can be defined as 

 [𝑆̅(𝜔)] = [−𝜔2[𝑀] + 𝑖𝜔[𝐶] + [𝐾]], (1) 

where ω stands for circular frequency; [M], [C], and [K] are the mass, damping, and stiffness matrices; i is the 

imaginary unit; and the overbar denotes complex quantities. 

Proportional Rayleigh damping is assumed above, so that [C] = α[M] + β[K], where α and β are the coefficients of 

proportionality with the mass and stiffness matrices, respectively. Although the present work focuses on that kind 

of damping, the presented design method can be extended to systems with hysteretic - as well as non-proportional 

viscous - damping. 

The inverses of [𝑆̅(𝜔)] are the receptance matrices, [𝑅̅(𝜔)], so that 

 [𝑅̅(𝜔)] = [𝑆̅(𝜔)]−1. (2) 

Experimentally, it may be convenient to use another set of frequency response functions (FRF) - inertances [𝐼(̅𝜔)] 

- related to the receptances by 

 [𝐼(̅𝜔)] = −
[𝑅̅(𝜔)]

𝜔2 . (3) 

2.1 Generalized equivalent parameters 

Generalized equivalent parameters (GEP) are a convenient way of introducing an auxiliary system (such as a 

VDN) to a primary system with no increment in the order of the corresponding matrices. Figure 1 shows how any 

SDOF VDN can be represented by a system composed of equivalent spring (with an equivalent stiffness ke) and 

damper (with an equivalent damping ce) elements. 

It can be shown ([10]) that, for a given SDOF VDN at a given temperature, as frequency functions, ke and ce can 

be computed respectively as 

 𝑘𝑒(𝜔) = 𝑟𝑒𝑎𝑙 [
𝜔2𝑚𝑎𝑘̅(𝜔)

𝜔2𝑚𝑎−𝑘̅(𝜔)
], (4) 

 𝑐𝑒(𝜔) = {𝑖𝑚𝑎𝑔 [
𝜔2𝑚𝑎𝑘̅(𝜔)

𝜔2𝑚𝑎−𝑘̅(𝜔)
]} 𝜔⁄ , (5) 

where real[·] and imag[·] denote respectively real and imaginary parts of the quantity in brackets (i.e., the dynamic 

stiffness at the base of the VDN), ma is the mass of the VDN, and 𝑘̅(𝜔) is given by 

 𝑘̅(𝜔) = 𝐿𝐺̅(𝜔), (6) 
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where L is named the design factor of the viscoelastic element, and 𝐺̅(𝜔) is the corresponding complex shear 

modulus, which can be obtained experimentally. In the absence of damping, 𝐺̅(𝜔) = 𝐺(𝜔). 

Figure 1. Equivalent generalized parameters. 

The anti-resonant - or characteristic - frequency, ωa, of the SDOF VDN is defined as the one such that, in the 

absence of damping, the denominator of the dynamic stiffness at its base is equal to zero ([11]), i.e., 

 𝜔𝑎 = 𝐿𝐺(𝜔𝑎) 𝑚𝑎⁄ . (7) 

The modified damping [𝐶̃] and stiffness [𝐾] matrices of the primary system can now be expressed respectively as 

 [𝐶̃(𝜔)] = [𝐶] + [𝐶𝑒𝑞] = [𝛼[𝑀] + 𝛽[𝐾]] + [𝐶𝑒𝑞], (8) 

 [𝐾(𝜔)] = [𝐾] + [𝐾𝑒𝑞], (9) 

where [Ceq] and [Keq] are full-order diagonal matrices, the entries of which are the equivalent damping and 

stiffness, respectively, of as many SDOF VDNs as are located in the corresponding primary system’s DOFs. 

2.2 The modal approach 

In the context of the modal approach (such as that of LAVIBS-ND®), the design of a VDN is entirely carried out 

in the modal space ([11]). By this approach, the VDN optimal mass can be computed by 

 𝑚𝑎 = ∑
𝜇𝑗𝑚𝑗

𝑁𝑀(∑ 𝜓𝑘𝑖𝑗
2𝑝

𝑖=1
)

𝑀𝑠
𝑗=𝑀𝑖 , (10) 

where μj and mj are respectively the mass ratio (1/10) and the modal mass of jth mode under control; 𝜓𝑘𝑖𝑗 is the 

entry of the modal matrix in the ki
th row and jth column, where ki is the position (DOF number) of the ith VDN, and 

Mi and Ms are the inferior and superior modes – whereas NM is the number of modes – to be controlled. 

2.3 The matrix partition method 

The dynamic stiffness matrices for a general modification can be expressed as ([8], [12]) 

 [∆𝑆̅(𝜔)] = [−𝜔2[∆𝑀(𝜔)] + 𝑖𝜔[∆𝐶(𝜔)] + [∆𝐾(𝜔)]], (11) 

where [ΔM(ω)], [ΔC(ω)], and [ΔK(ω)] are the modifications in mass, damping, and stiffness, respectively. 

For a localized modification, matrices [∆𝑆̅(𝜔)] assume the following form: 

 [∆𝑆̅(𝜔)]𝑛×𝑛 = [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ [∆𝑆̅(𝜔)]𝑟×𝑟

], (12) 

where n is the number of DOFs of the system, and r is the number of DOFs of the modification. 

Then, the modified receptance matrices, [𝑅̅∗(𝜔)]𝑛×𝑛, are given by 

 [𝑅̅∗(𝜔)]𝑛×𝑛 = ([𝑆̅(𝜔)]𝑛×𝑛 + [∆𝑆̅(𝜔)]𝑛×𝑛)−1. (13) 

As Soares and Lopes [7] noted, the matrix partition method is called ‘a local method’ because its focus lies on the 
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partition of the receptance matrix that is associated with the DOFs in which the structural modification takes place. 

As shown in Rodrigues [9], the elements of the receptance matrix of the modified system in the partition associated 

with the modification DOFs can be obtained - in view of eqs. (2) and (13) - by 

 [𝑅̅∗(𝜔)]𝑗𝑗 = ([𝑅̅(𝜔)]𝑗𝑗
−1 + [∆𝑆̅(𝜔)]𝑗𝑗)

−1
, (14) 

where jj indicates the partition of interest, with dimension r × r. For a SDOF VDN, r = 1. 

Then, in the matrix partition method, the effects of inserting the VDN are taken into account by computing, for 

each frequency, the GEPs for each VDN, assembling matrix [∆𝑆̅(𝜔)], and evaluating eq. (14). 

2.4 The matrix product method 

The matrix product method is so named because it represents the modification as a product of two matrices ([5], 

[7]) such that 

 [∆𝑆̅(𝜔)]𝑛×𝑛 = [𝑈(𝜔)]𝑛×𝑟 × [𝑉(𝜔)]𝑟×𝑛, (15) 

where [U(ω)] and [V(𝜔)] are called the first and second matrices of the matrix product, respectively. 

The modified matrix is given by ([4], [6]) 

 [𝑅∗(𝜔)]𝑛×𝑛 = [𝑅(𝜔)]𝑛×𝑛 − [𝑅(𝜔)]𝑛×𝑛[𝑈(𝜔)]𝑛×𝑟[𝑊(𝜔)]𝑟×𝑟
−1 [𝑉(𝜔)]𝑟×𝑛[𝑅(𝜔)]𝑛×𝑛, (16) 

where 

 [𝑊(𝜔)]𝑟×𝑟
−1 = [𝐼]𝑟×𝑟 − [[𝑉(𝜔)]𝑟×𝑛[𝑅(𝜔)]𝑛×𝑛[𝑈(𝜔)]𝑛×𝑟]. (17) 

Then, in the matrix product method, the effects of inserting the VDN are taken into account by computing, for 

each frequency, the GEPs for each VDN, assembling matrices U(ω) and V(ω), and evaluating eqs. (16) and (17). 

As will be confirmed later, if r << n, the matrix product and the matrix partition methods are much more suitable 

than the modal approach, since they do not demand a thorough analysis of the modified system, providing a 

reduction in computational efforts. 

3  Methodology 

In order to investigate the equivalence of the methods presented herein, a cantilever steel beam (see Figure 2) - 

nominally 1 500 mm long, 50 mm wide, and 8 mm thick - was modeled by the finite-element method (with Euler-

Bernoulli beam elements) and tested by experimental modal analysis (EMA) with impulsive excitation 150 mm 

apart its fixed end and acceleration measurement at its free end. A simple SDOF VDN (also depicted in Figure 2, 

in illustrative way), positioned at the free end of the beam as well, was then designed by each of those three 

methods. 

In order to properly compare the different techniques, the optimal mass of the VDN, computed via eq. (10) on the 

modal approach, was also adopted on the computations by the methods of reanalysis. Furthermore, for design 

purposes, the location of excitation and response was made coincident with the location of the VDN (at the free 

end of the beam), allowing use of the matrix partition method. Selected viscoelastic material was the EARTM C-

1002, from Aero Technologies LLC, with operating temperature of 293 K (20° C). The frequency range for 

vibration control was from 45 to 180 Hz (the limits of which are labeled Li and Ls, respectively). 

3.1 Modeling and parametric estimation for the primary system 

Mesh convergence of the finite-element model for the primary system was ascertained by both stability on the 

location of the relevant resonances and comparison of their values with the theoretical ones ([13]). It was found 

that, by using the Guyan reduction, a mesh of 30 elements would be enough to ensure accurate results. 

Parametric identification was then carried out within an optimization process similar to that employed in designing 

the VDN, as described in section 3.3. Comparison was made between the experimentally-determined inertance Iexp 

and its numerical counterpart Inum (see eq. (3)). The objective function for minimization, f(x), was defined as 
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Figure 2. Computational representation of the primary system and of an instance of VDN. 

 𝑓(𝑥) = ∑ [𝛱𝑘(|𝐼𝑘
𝑛𝑢𝑚| − |𝐼𝑘

𝑒𝑥𝑝
|) |𝐼𝑘

𝑒𝑥𝑝
|⁄ ]

2400 𝐻𝑧
𝑘=0 , (18) 

where Π is a weighting function. The vector of design variables x was 

 𝑥 = (𝛼, 𝛽, 𝑡, 𝐸, 𝜌)𝑇, (19) 

subject, in the second part of the optimization procedure, to the constraints 

 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥          𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥          𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥  

 𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥          𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥  

where t, E, and ρ are the beam thickness, the beam material elastic longitudinal modulus, and the beam material 

density, respectively; and subscripts min and max refer to minimum and maximum values, respectively. 

It is worth noting that a linear normalization scheme was adopted throughout the optimization procedure. Also, 

experimental estimation of the modal parameters of the beam was carried out via standard EMA techniques: peak 

picking and half power bandwidth. 

3.2 Optimizing the VDN 

By each of those three methods, designing the VDN consisted in finding its characteristic frequency in such a way 

that response of the primary system was minimized by one of two criteria: (1) FRF’s peak value, or (2) reduction, 

in dB relative to original system’s FRF, of broadband energy content of the modified system’s FRF, within the 

control range. The chosen FRF was the point receptance of the primary system at its free end. 

Then, the objective function for minimization, f(x), was given, depending on the selected criterion, by 

 Criterion 1: 𝑓(𝑥) = max[20 log10|𝑅̅∗(𝜔)𝐿𝑖
𝐿𝑠|], or (20) 

 Criterion 2: 𝑓(𝑥) = 20 log10 [
√∑ |𝑅∗

𝑘|𝑘=𝐿𝑠
𝑘=𝐿𝑖

2

√∑ |𝑅𝑘|𝑘=𝐿𝑠
𝑘=𝐿𝑖

2
], (21) 

where the vector of design variables x is 

 𝑥 = 𝜔𝑎, (22) 

subject to the constraint that it should lie anywhere within the frequency range of concern (0 to 400 Hz). 

3.3 Optimization strategy 

The optimization strategy was a hybrid one, with non-linear techniques sequentially associated ([14]). Initially, 

the genetic algorithm technique was applied (to approximate the values of the variables in the design vector), and 

then, the SQP (Sequential Quadratic Programming) technique was applied (to refine the values of the variables). 

Their respective ga and fmincon implementations in the MATLAB® computational environment were employed. 
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4  Results and discussions 

4.1 Parameters of the primary system 

Estimated parameters for the beam are given in Table 1, whereas the corresponding experimental and regenerated 

inertances are presented in Figure 3. The results are quite close. 

Table 1. Estimated primary system parameters. 

α β (10-6) t [mm] E [GPa] ρ [kg/m³] 

0.3586 9.158 8.097 204.2 8 050 

Figure 3. Experimentally-determined and numerical inertances. 

4.2 Design of the VDN 

It was found that the VDN’s characteristic frequency is always identical, irrespective of the method used. The 

optimal mass and corresponding frequency for each of the control criteria are given in Table 2. It should be noted 

that the methods of reanalysis demanded considerably less computational effort, resulting in a 95% (partition) and 

77% (product) decrease in time consumption relative to the modal approach. 

Table 2. VDN's characteristic frequency for each control criterion [Hz]. 

Mass ma Criterion 1 Criterion 2 

172 g 37.4 48.1 

As the VDN’s characteristic frequency is the same, the effects are therefore identical when the device is inserted 

into the primary system, as it can be seen in Figure 4. In that figure, concerning ‘C1’ (criterion 1), curves for the 

three methods are plotted, resulting in the same curve. As to ‘C2’ (criterion 2), just one curve is plotted, since the 

other ones result in identical plots and were omitted for the sake of clarity. 

Regarding the two control criteria, the distinction is noticeable. It is clear that criterion 1, focused on the reduction 

of the largest FRF’s peak value, leads to smaller vibration level reductions on the other resonances within the 

control band. On the other hand, criterion 2 is more suitable when broadband control is of primary concern, for it 

properly leads to a greater overall reduction in the area below the FRF curve. 

5  Conclusions 

As expected, the results show that the optimal modal parameters for a viscoelastic dynamic vibration neutralizer 

obtained by the three distinct methods considered in the present paper are identical, since both response-reanalysis 
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methods, though one local and the other global in nature, are exact ones. Furthermore, it is verified that the 

reanalysis methods are considerably less time-consuming than the modal approach, an important advantage when 

optimization processes are of concern. Finally, the differences in results stemming from the different control 

strategies are evidenced, as they tackle different aspects of the problem. 

Figure 4. Comparison between design methods and control criteria, “C1” and “C2”. 
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