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Abstract. Oil reservoirs in carbonate porous media are usually composed of several structures such as matrices,
fractures and cavity systems, which impact properties like porosity, permeability and fluid transport behavior [1].
In this context, the problem of flow through a reservoir in the presence of karsts is rather challenging, and therefore
the predictive capabilities related to the flow and transport processes remain severely limited. In this work, we
perform simulations of a quarter of a five spot problem in a domain Ω ⊂ R2 to numerically describe an incom-
pressible single-phase flow in a karstified carbonate rock. The methodology is based on the geometric treatment
and simulation data proposed in [2], and on the application of the Karst Index (KI) concept presented by [3]. The
use of the KI follows a similar approach to the application of the Well Index presented in [4]. Given the lack of
knowledge of the precise geometry of karst network shape, we test different arrangements with branching (such as
in [2, 5]). The mathematical model used includes equations that describe the fluid flow through a conduit, and a
mass conservation equation for each component. The domain is discretized by cartesian grids with different con-
figurations of homogeneous and high-contrast heterogeneous media, while the governing equations are discretized
by conservative finite volume methods. Results are verified in terms of conservation of mass. We compare the
generated results by using Darcy’s law changing the parameters of the conduit to assess its influence on the overall
simulation.

Keywords: Conduit, Karst Index, carbonate rocks, Darcy flow.

1 Introduction

Reservoirs are naturally fractured, and as a consequence they have an extensive and complex system of sec-
ondary porosity [6]. Each reservoir is composed of different properties of fluid systems, fractures and cavity
systems, and therefore various permeability properties and fluid transport patterns [1]. In particular, the hetero-
geneity arising from the presence of conduits is an essential property to be captured, because depending on the flow
direction, resistance to the natural flow direction or facilitated flow channels can be identified [7]. Quantifying and
predicting the behavior of hydro-mechanical parameters of these reservoirs is a major challenge for the industry.

Two main challenges are involved in the computational simulation of naturally fractured reservoirs [8]: in-
herent heterogeneity and uncertainties associated with the characterization of a matrix and fracture/cavity system
for any field-scale problem; difficulties in conceptualizing, understanding and describing the transport flows and
processes in this type of training system. As additional complexities, there is a strong coupling between the dif-
ferent scales of the problem and the non-linearity of the phenomena involved. In this framework, the conduit has
been treated as a one-dimensional discrete hydraulics network with high permeability [9]. In addition, continuum
formulations have been developed in which the mass transfer component is constitutively given in terms of an
exchange coefficient, whose inverse plays the rule of a conduit resistance, multiplied by the pressure difference
between the two sub-structures [10].

In practice, karst modeling is generally limited by the lack of reliable information about the geometry config-
uration and the computational effort required by such discretization. An alternative approach is to consider more
efficient models that are placed on coarser grids, but that have the ability to reproduce with reasonable fidelity the
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behavior of the original model, for example, to homogenize characteristic parameters of the geometry to reduce
the geometry of a straight channel of the conduit network to one dimension. In this perspective, we seek to solve
the elliptic system which defines the single-phase problem in a domain where the karst is embedded applying a
model that couples 2D/1D flow system. The methodology applied here is based on the geometric treatment and
simulation data proposed in [2], and on the application of the Karst Index (KI ) concept presented by [3]. The use
of the KI follows a similar approach to the application of the Well Index presented in [4]. As a way of validating
the results, we verified that the masses are conserved in all elements. In addition, we observe that the behavior of
the pressure, velocity and saturation fields are consistent with the expected physical behavior.

The following section will discuss the characteristics of the computational model used in this work, including
geometric domain, discretization scheme, mathematical models involved in the simulation and boundary condi-
tions. The results and discussions are discussed in section 3. Finally, in section 4, final comments and suggestions
for future work are offered.

2 Mathematical setting

We begin by stating the pattern flow model and subsequently we present the formulation within the framework
of homogenization to derive the coupled 2D/1D flow system given in [2]. We consider single phase incompressible
flow in a carbonate matrix that contains within its domain a network of karst conduits. For the sake of simplicity,
gravitational, capillary and inertial effects are neglected. The elements of the network exhibit high aspect ratio
between length and hydraulic diameter, and higher permeability compared to that of the background skeleton.
In order to make clear the changes present in the solution arising from the introduction of the karstic network,
we consider equal permeability in all rock locations in which no karstic segment is present, thus leaving field
heterogeneity represented only by the difference between the permeability of the karst and the permeability of the
matrix.

Let Ω ⊂ R2 be the microscopic domain with boundary ∂Ω which is constituted by the porous matrix and
conduit system. The local hydrodynamics along with the transmission conditions are governed by the elliptic
system

∇ · ui = 0, in Ω,

ui = −Ki

µ
∇pi, i = m, k,

(1)

supplemented by boundary condition n · ∇pm = 0 on ∂Ω.

In this model, pi,ui,Ki, i ∈ {m, k}, are respectively the pore pressure, Darcy velocity and permeability
in each subdomain, and µ is the fluid viscosity. We consider the application of derivation of a coupled 2D/1D
reduced model posed at the intermediate (meso) scale, where the lower-dimensional conduit network is envisioned
as a collection of line sources immersed in the carbonate matrix. This approach was presented in [2] in the context
of this R3 → R-model reduction.

Thereafter we state the governing equations of the reduced mesoscopic model according to the configuration
developed by [3]. Denoting γ a subdomain associated with the karst conduit network of 1D reduced objects inside
Ω, the reduced equations can be obtained by averaging the flow model over the cross section area of the conduit
Ak. To this end, we assume the continuity of pressure to interchange integration and differentiation in the storage
component. As a final model, we seek approximate flux ui(x) and pressure pi(x), i ∈ {m, k}, satisfying:



∇ · um =
KI

µ
(pk − pm)δkm + qδm, in Ω,

um = −Km

µ
∇pm, in Ω,

duk

ds
= − 1

Ak

KI

µ
(pk − pm), in γ,

uk = −Kk

µ

dpk
ds

, in γ,

n · ∇pm = 0, on ∂Ω,

(2)

where q is a source term, KI is the karst index and functions δ appearing described by line- or point-source Dirac
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measures.
As described by [3], the computations of the karst index are carried out at the finest scale, where the local

pressure and velocity profiles are computed by solving the high-fidelity diffusion equations in the matrix and
computing the flow rate at the conduit interfaces. In our numerical experiments, we use the KI ’s values generated
by [2].

After defining the model that describes the problem, we couple the equations of local velocity and conserva-
tion of mass, resulting in a system with two equations, in addition to the boundary condition. And then, the coupled
elliptic system (2) was discretized using a conservative finite volume method, in order to obtain the following linear
system:

 Lm Hm

Hk Lk

 pm

pk

 =

 q

0

 . (3)

The system (3) has order nk + nm, where nm is the number of pressure unknowns in the porous matrix and
nk is the number of pressure unknowns in the conduit. The Lm and Lk blocks are discretizations of the Laplacian
operator in 2D and 1D, respectively, while Hm and Hk are sparse blocks containing terms corresponding to the
mass transfer between matrix and karst conduits. They are almost transpose of one another, differing only by the
convenient treatment of bifurcations and conduit extremities.

3 Numerical experiments

In this section, we illustrate the numerical results of the coupled reduced by conducting simulations in scenar-
ios of a box-shaped reservoir characterized by the presence of a branchwork type karst conduit in the sense of [5].
In this setting we consider the problem of a quarter of a five-spot. The values accepted as standard configuration
are shown in table 1 and were extracted from [2].

Table 1. Input parameters adopted in the simulations

Domain (Lx × Ly) 1 m × 1 m

Conduit radius 1e-4 m
Rock Permeability (Km) 1e-14 m2

Karst Permeability (Kk) 1e-9 m2

Viscosity 1e-3 Pa s
Karst Index (K1

I ) 1.8544e-13 m3 (for horizontal segments)
Karst Index (K2

I ) 5.9188e-13 m3 (for diagonal segments)
Flow rate (q) 1 m3/s

We illustrate the numerical performance of a coupled system in two scenarios that correspond to a cross
section of a reservoir characterized by the presence of a branchwork-type karst conduit. The two chosen geometries
inspired from [2, 5] are shown in Fig. 1. Considering the input parameters presented in Table 1, our main goal
here is to analyse is to solve the elliptic system defined in the previous section in order to obtain the pressure and
velocity fields. In the simulations shown in Figures (2-6) the porous matrix was discretized in 10000 uniform
elements and the elements of the karst region has the size of an edge or diagonal of a cell of the matrix mesh,
depending on the direction in which the karst segment crosses the matrix domain.

In the Figure 2, we present the pressure profile in the porous matrix. The numerical results behavior is
consistent with the physical phenomenon: the pressure value decreases along the diagonal direction of the injector
to producing well. In addition, it can be seen that when considering the existence of the conduit, the intermediate
region of the domain assumes a flat shape that resembles a flat shape, indicating that the flow occurs in a more
distributed way compared to the field in which there are no karstes.The perception of such differences is facilitated
by the observation of the diagonal behavior of the pressure matrix going from the injection well position towards
the production well, as illustrated in Fig. 3 (left). To the right in this figure is a table that shows the pressure
variation between the producing well and the injection well, where it is possible to observe a relatively significant
difference between the cases studied, corresponding to approximately 16% using geometry I and approximately
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10% using geometry II, considering the result without conduit as a comparative reference. These results lead us
to believe that the flow in a domain that contains karsts with a configuration and proportion comparable to those
considered is more distributed in the directions of the branches, which can significantly impact the value of the
pressure gradient.
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Figure 1. Sketch of the geometries considered as a representation for a branchwork-type karst conduit: Geometry
I (left) and Geometry II (right) used for simulation.

Figure 2. Pressure profile in the porous matrix for domain without conduit (left); using the Geometry I (center);
using the Geometry II (right).

In turn, the velocity fields in the porous matrix region are shown in Fig. 4. In this Figure, the magnitudes
of the velocity field elements are presented on a logarithmic scale. We have inserted the geometric design of the
conduit geometry in violet to facilitate the physical position of the karst network in the domain. When comparing
the cases studied, it is observed that each karst segment behaves as a kind of sinkhole to which the porous matrix
fluid is attracted. However, following the flow trend towards the producer well, the fluid, in the intermediate regions
of the karst, is transported from the karst to the matrix with a velocity lower than the velocity of entry into the karst.
This is due to the amount of fluid that is transported between the internal nodes of the karst network. At the end
closest to the exit of the domain fluid, the opposite occurs, the karst exit velocity is higher, probably due to the
accumulation and transport of part of the fluid through the internal region of each karst segment. As a reflection of
the pressure fields, the velocities in the central regions of the domain, in which there is a large presence of conduit
segments, present magnitudes at levels lower than those identified by the colorimetric scale displayed in the central
part of the domain in the case where there is no conduit.

With respect to the pressures inside the conduit, the Figure 5 illustrates how the values of this result are
distributed considering Geometry I. The representation on the left shows the signs of the pressure values for which
flow input can be interpreted at the positions of the red lines and flow output at the positions of the cyan lines. Due
to the large difference in the large orders of close pressures it is interesting to use logarithmic scaling for readability
purposes. Such a representation in logarithmic scale is shown on the right in this same figure. These results agree
with the velocity field emphasizing the magnitudes and behavior of the flow. The pressure distribution occurs in
an analogous way when considering Geometry II.

By making some modifications to the local karstic velocity equation in system (2), it is possible to study the
use of a transmission factor different from the one applied in Darcy’s law within the subdomain γ, such as the

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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factor of the Poiseuille’s law. During our experiments, we performed tests to investigate the impacts of this change
on velocity and pressure profiles. However, no significant difference was observed, only a proportional variation
of the results presented until here. Therefore, we understand that it is not necessary to include these results here.
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Figure 3. Diagonal pressure profile in the porous matrix (left); Difference between the bottom pressures of the
injection and production wells (right).
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Figure 4. Log-scaled velocity fields in the porous matrix for (a) domain without conduit; (b) using the Geometry
I; (c) using the Geometry II.

Finally, we tested the sensitivity of the pressure profile in relation to changes in the KI values and Km,
keeping the other parameters as shown in Table 1. For these tests, we used the pressure behavior in the diagonal
positions of the matrix that describes the pressure field as a comparative parameter. These results, presented in
the Figure 6, consider simulations using geometry I since there are no changes in conclusions when observing
the results generated using the other geometry. Notably, the field is more sensitive to change in porous matrix
permeability than changes in KI value.

In general, changes in the values of KI did not affect the global amplitude of the pressure, but had an impact
on images located in some segment close to the location; it was observed that as we increase the value of KI the
pressures in these regions tend to approach a constant value; on the other hand, when reducingKI towards zero, the
pressures in these regions approach the behavior observed when karst is not considered in the domain. Regarding
the changes in km, the opposite effect was observed: There are sudden changes in the difference between the
pressures at the positions of the wells, but the evolution of pressures during the domain follows a coherent variation
trend.

As final experiments, we consider the 60×60 heterogeneous permeability field that indicates the permeability
values in each element of the porous matrix shown in Figure 7. In this experiment, the karst is also heterogeneous
so that the permeability values at each edge correspond to five orders of magnitude greater than the permeability
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Figure 5. Pressures inside the conduit network in the shape of Geometry I.
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Figure 6. Diagonal pressure profile in the porous matrix with variation of parameters KI and Km.

value of the matrix of the cell that contains this edge. The resulting pressure and velocity fields corroborate the
fields obtained when we consider homogeneous permeability fields in the subdomains if considered separately,
such as illustrated in Figure 8.
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Figure 7. Log-scaled permeability field.
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Figure 8. Log-scaled velocities of a heterogeneous field in the porous matrix for domain (a) without conduit; (b)
using the Geometry I; (c) using the Geometry II.

4 Conclusions

We successfully modeled and presented results for single-phase flows in the presence of karst conduits. It
is expected that the treatment presented in this work are quite promising to be applied in more robust cases of
naturally fractured reservoirs. Future works include the extension to this technique for two-phase flow in a 3D
domain, and has potential to be used with applications to uncertainty quantification [11], also with multiscale
methods [12, 13] in parallel simulations.
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