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Abstract. In this work a Spring-Mass-Damping system (SMD) of one degree of freedom is used to represent the 

human-structure interaction during jumping on a thin rectangular plate under a time-dependent base excitation. 

The plate is considered simply supported and its strains relations are described by the Von Karman nonlinear 

theory. A parametric analysis using the piecewise-smooth contact dynamics theory is performed to study the 

influence of loss of contact during the flight phase of jumping cycles. The different stable jumping strategies of 

the human body for incremental values of the human damping ratio are found. Obtained results show that, 

depending on the values assumed for the biodynamic parameter, chaotic responses, hysteresis and coexisting 

attractors can be observed in the bifurcation diagrams when the human degree of freedom is controlled. 
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1  Introduction 

Structures as footbridges, buildings floors and stadia are susceptible to vibrations induced by human 

activities, such as: walking, jumping and bobbing (Bachmann et al. [1]). In order to prevent the human discomfort 

caused by excessive levels of vibrations and to predict the respective structural damage, the vibrations 

serviceability in these structures has received a many attention in the literature, mainly due to the fact that new 

design conceptions allow to use lightweight, long spans and slender structures (Kala et al. [2] and Jones et al. [3]). 

As a result, extensive studies have been carried out on dynamic systems with low damping and more prone to 

interacting with human actions (Shahabpoor et al. [4]), where resonant states can be easily perceived which can 

severely affect the structural integrity (Chen et al. [5] and).  

Although loads due human activities are recurrent in different types of structures, rigorous studies are still 

necessary for their correct mathematical characterization, in order to represent sufficiently the effect of human-

structure interaction. This is because the dynamic actions generated are directly related to the unique characteristics 

of each person, as weight, age, height, knee flexion and even the way each person performs an activity on the 

structure (Varela et al. al [6]). In this aspect, many studies carried out experimental analyzes to discuss the 

biodynamic effect and the human load potential while performing different activities on structures 

(Shahabpoor et al. [7]). 

In the design practice of floors subjected to vibrations induced by human jumping, the modelling of structures 

with force-only models is recurrent, where deterministic loads capable of reproducing asymmetric experimental 

responses are used to characterize human behavior (Racic and Pavic [8]). In the analysis using force-only models, 

the influence of individual biodynamic properties, such as stiffness, mass and damping, on the modal parameters 

of the structure is neglected. With that approach, the beneficial effect of human-structure interaction (HSI) is not 

perceived, which can result in expensive structural projects.  

Several studies have been dedicated to representing the HSI through biodynamic models with few degrees of 

freedom, such as: Inverted Pendula (Milton et al. [9] and Kwon et al. [10]) and Spring-Mass-Damping – SMD 

(Caprani and Ahmadi [11] and Shahabpoor et al. [12]), which are coupled to the structure and allow capturing the 

biodynamic behavior of the human body. About floors subjected to human jumping, Gaspar et al. [13] carried out 

numerical and experimental analyzes of the dynamic behavior of a flexible concrete plate during periodic jumps. 
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Through experimental analyses, the biodynamic parameters of the human body were obtained for an equivalent 

SMD model. In the numerical analyses, initially a force-only model was used, which was compared with a 

biodynamic model of SMD type without considering the loss of contact between the structure and the jumper's 

feet. The responses obtained showed that the force-only model provided higher floor acceleration peaks when 

compared to the SMD model for the quasi-resonant case. On the other hand, the force-only model has a better 

approximation with the experimental response when the excitation frequency moves away from the resonant 

region. In the work of White et al. [14], dynamic patterns for human behavior when periodic jumps are performed 

on a rigid platform was studied, where was noticed that the leg stiffness of the jumper can change depending on 

the jumping frequency and has a non-linear dependency. Next, White et al. [15] using a simple model with one 

degree of freedom, studied the effect of loss of contact between the feet and the structure during jumping on an 

oscillating base. The findings of this work showed that chaotic vibrations and the coexistence of multiple solutions 

for human jumping strategies can be found in a numerical modeling for a given parameters combination. 

Based on this, in this work, the nonlinear human response is studied when jumps are performed on a thin 

rectangular plate subjected a time-dependent base excitation. The touch-down and take-off effects caused by the 

loss of contact events during jumping are investigated. The Kirchhoff non-linear thin elastic plate theory is used 

to model the plate and the nonlinear Von-Kármán relations are used to describe the deformation relations. A SMD 

model with one degree of freedom is used to represent the human body coupled onto the plate. In order to capture 

the mechanisms of the loss of contact between the SMD model and the plate during the flight and contact phase, 

the coupled system is solved as a piecewise-smooth contact dynamics problem (Di Bernardo et al. [16]) which is 

integrated in time by the fourth-order Runge-Kutta method. The dynamic responses of the SMD model for various 

system parameter combinations of human damping ratio and forcing frequency are evaluated. 

2  Mathematical formulation 

Consider a simply supported elastic rectangular plate subjected to a time-dependent base excitation with 

amplitude Ab and excitation frequency , as shown in Fig. 1. The plate has coordinates (O; x; y; z) and 

displacement fields u, v and w with length a, b, thickness h, density  and Young modulus E. In order to represent 

the human interaction on the plate, a spring-mass-damper (SMD) model with one degree of freedom and modal 

mass mh, equivalent stiffness kh and damping coefficient ch is considered. The SMD model is located at coordinates 

(x1, y1) and the application of human potential gravitational force (Gh = mh g) is considered directly at jumper 

degree of freedom (wh). In this section, the formulation presented is based in the work of Dias e Del Prado [17]. 

 

Figure 1. Rectangular plate with the SMD model and base excitation 

Neglecting the rotatory inertia and the shear deformation and using the nonlinear Von-Kármán theory, the 

elastic potential energy of the plate can be written as: 
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The jumper stiffness kh is considered by the elastic potential energy of the SMD model (UH) given by: 
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where wh is the displacement of the SMD model (see Fig. 1), which refers to the displacement of the body centre 

of mass of the jumper and w is the transverse displacement of the plate. In this way, the total elastic potential 

energy of the coupled system (plate and SMD model) results in sum: U = UP + UH. 
For this study, the plate is considered simply-supported with a base excitation (CHAI et al. [18]). Then, to 

satisfy the boundary conditions and to reduce the plate system to finite dimensions, the following u, v and w fields 

displacements are adopted: 
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where m e n are respectively the half-wave numbers in x and y directions; M and N are the number of terms used 

in each field displacement and um,n(t), vm,n(t) e wm,n(t) are the unknown amplitudes; Ab is the amplitude of the 

transverse base displacement and  is the excitation frequency of the base. Thus, the vector of generalized 

amplitudes of the plate is given by: q = [um,n(t), vm,n(t), wm,n(t)]T, where its dimension is given by Nq, which is the 

number of degrees of freedom considering the plate’s field displacement (u, v and w) and excluding the degree of 

freedom of SMD model; The generic element of the vector q is referred to as qj, for 1 ≤ j ≤ Nq. When the 

generalized amplitude of the SMD model (wh) is important, such a generic term will be referred as qÑ, with 

Ñ = Nq + 1. 

The kinetic energy of the coupled system T is given by the sum of the kinetic energy of the plate TP with the 

kinetic energy of the jumper TH, as described by: 
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where  is the density in kg/m³, h is the plate thickness, mh is the mass of the jumper and the over-dot indicates the 

time derivative. 

The nonconservative damping forces of plate are assumed to be of viscous type and, using the Rayleigh 
dissipation function, can be written as: 
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where cp, p, , h and m,n are respectively the damping coefficient, the viscous damping ratio, the density, the 

thickness and the natural frequency of plate, which is found in the first mode of vibration (m = 1, n = 1). Similarly, 

the Rayleigh dissipation function for SMD model FH is given by: 
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where the human damping coefficient is given by: ch = 2 h mh h, in which h is the human damping ratio, mh is 

the mass of human body and h is the jumper body natural frequency. The nonconservative damping forces of 

coupled system (F) is given by the sum: F = FP + FH. 

The work (W) done by the jumper weight (Gh) refer the human potential gravitational energy acting on the 
system during the jumping and it can be written as:  

 
;    with ,h h h hW G w G m g= − =

 (7) 

where Gh is the human static weight, g is the gravity acceleration and wh and mh are, respectively, the displacement 

and the mass for the body centre of mass of the jumper. 

In order to obtain the set of nonlinear dynamics equations, the Rayleigh-Ritz method together with the 

Hamilton principle are used in order to method given by:  
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where Q is the generalized forces obtained by differentiation of the Rayleigh dissipation function and of the virtual 

work done by external forces for 1 ≤ j ≤ Nq and Ñ = Nq + 1. 

Thus, the equations of motion of the coupled system are obtained as: 
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where mj is the modal mass of the plate given by ¼  a b h; cj,i refers to the linear modal damping coefficient of 

the plate; kj,i, kj,i,k and kj,i,k,l are stiffness term giving linear, quadratic and cubic nonlinearities of the plate; i is the 

mode shape associated to ith generalized coordinate of plate and applied at points x1 and y1; Fj and FÑ are the base 

motion forces associated with the plate equations and the SMD model equations, respectively. 

The obtained system in Eqs. (9a) to (9d) refers to the contact phase, where the jumper is coupled with the 

plate. In order to consider the flight phase, i.e., the time when the jumper loses contact with the plate, the interaction 

force onto the plate and the SMD model is assumed to be zero and the only force that acts in the SMD model is 

the Gh = mh g. In this work that interaction force will be called as Plate Reaction Force (PRF), which refers to the 

reaction force that the jumper applies to the plate. From Eq. (9b) it is observed that the Plate Reaction Force (PRF) 

can be written as: 
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In the flight phase (i.e., PRF = 0) the nonlinear vibrations of the plate are only due to the base excitation and 

a new plate equations system decoupled from the SMD model is used, which is given by:  
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where the system of Eqs. (11a) and (11b) is an adaptation of the Eqs. (9a) and (9c) by neglecting human biodynamic 

parameters, which results in a set of nonlinear equations that describe the plate in forced vibration state by the base 

excitation. On the other hand, also during the flight phase, the SMD model goes into free fall motion and its 

dynamic equation is obtained decoupled from the plate, given by: 

 .h hÑ
m q G= −  (12) 

Assuming that  = −Gh /mh, the solutions of Eq. (12) for the human displacements and velocities during the 

flight phase are given by Eqs. (13a) and (13b), where the response for the displacements is evaluated as a parabola 

of the form. 
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Thus, two set of nonlinear equations are obtained for the problem studied here, the first (Eqs. 9a-d) is about 

coupled equations between the plate and the SMD, which represent the contact phase. On the other hand, the 

second set is given by the free-falling SMD model system (Eqs. 13a-b) and the empty plate system (11a-b) 

decoupled from each other in order to represent the flight phase. Then, the sets are solved as a piecewise-smooth 

contact dynamics problem (White et al. [15] and Di Bernardo et al. [16]) and are numerically integrated by the 

Runge-Kutta fourth order method. For this, PRF is controlled in order to determining the precise touch-down 

(PRF > 0) and take-off (PRF = 0) events. 

3  Numerical results 

For the numerical simulations, a thin concrete rectangular plate has been considered. The physical and 

geometrical properties of the plate are given by: a = 14 m, b = 10 m, h = 0.10 m, E = 27 GPa,  = 2500 kg/m³, 

 = 0.2 and p = 0.02, which were chosen in order to the natural frequency of the plate (1,1) is close to the human 

body frequency (h). To model the simply supported with fixed edges condition for the plate, 16 degrees of 
freedom (Nq = 16) for the displacements field (u, v and w) in the expansions of Eqs. (3a), (3b) and (3c) were 

considered using the following generalized coordinates (Amabili [19] and Dias [20]): u2,1, u2,3, u4,1, u4,3, u6,1, u8,1, 

v1,2, v1,4, v1,6, v1,8, v3,2, v3,4, w1,1, w1,3, w3,1, w3,3. The SMD model is allocated at mid-span of the plate (x1 = a/2 and 

y1 = b/2) and their biodynamic properties are (White et al. [14]): mh = 76.64 kg and h = 2.48 Hz, which implies 

in a leg stiffness of kh = 18.6 kN/m. A nondimensionalization of variables is introduced for computational 

convenience: the displacement of the body centre of mass of the jumper (wh) has been divided by  = g /h², the 

plate vibration amplitudes are divided by the plate thickness (h) and the time is multiplied by human body 

frequency h. The natural frequency for the empty plate is 2.297 Hz. However, when the SMD model is positioned 

on the plate, occurs an interaction between the two systems and a small change in natural frequencies is observed, 

where the frequency for the occupied plate and for the human body is now given respectively by: 2.243 Hz and 

2.537 Hz.  

Now, parametric sweeps of the human damping ratio will be discussed for increases from 0.1 to 0.5 

(White et al. [15]) with excitation frequency values () around the linear resonance between the jumper body and 

the base movement, i. e.,  = 1.0 h. For this case, a large base excitation amplitude of Ab = 0.13 h was chosen. 

All bifurcations diagrams were obtained using the brute force method (Del Prado [21]). Figure 2 displays the 

responses for the SMD model due to incremental values of the human damping ratio (h) with excitation frequency 

values of  = 0.9 h (Fig. 2a),  = 1.0 h (Fig. 2b) and  = 1.1 h (Fig. 2c).  

(a)  = 0.9 h (b)  = 1.0 h (c)  = 1.1 h 

   

Figure 2. Nondimensional SMD vibration amplitude for increases of the human damping ratio (h) with 

Ab = 0.13 h and (a)  = 0.9 h, (b)  = 1.0 h and (c)  = 1.1 h. 

Figure 2a depicts that, for small values of human damping ratio, 2T periodic vibrations are found for the 

SMD response. This occurs when a frequency allows the linear resonance is chosen as the jumping strategy, as 

was also observed by White et al. al. [14] and White et al. [15]. As the damping is increased, at a critical value, 

the human response is characterized by a 1T stable solution. This is displayed in phase portraits and Poincaré maps 
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of Fig. 3a and 3b, illustrating the stable attractors respectively for 2T and 1T solutions. Figure 2b shows that 

chaotic solutions can also be found for the jumper response. This finding suggests that is impossible to periodically 

jump over the plate when the certain parameters combination is considered. For higher values damping, the chaotic 

solutions become in 4T stable solutions. Afterwards, at h = 0.28, 2T stable solutions can be perceived for the 

jumper response. This is depicted in Fig. 3c, 3d and 3e, representing chaotic, 4T and 2T respectively solutions. 

Figure 2c also points chaotic solutions for small values of the human damping ratio with the base excitation 

amplitude studied. When the damping continues to be increased, also can be found windows with quasi-periodic 

and high order periodic solutions. For example, at h = 0.32 the jumper response shows quasi periodic oscillations 

and at h = 0.36 the response suggests 4T periodic vibrations. For high damping values with decreasing damping, 

the Feigenbaum 2T cascade can be noticed. This is reflected in Fig 3h, 3g and 3f, illustrating the transition in 4T, 

quasi-periodic and chaotic solutions. 

(a)  = 0.9 and h = 0.15 (b)  = 0.9 and h = 0.30 

  
(c)  = 1.0 and h = 0.12 (d)  = 1.0 and h = 0.21 (e)  = 1.0 and h = 0.28 

   
(f)  = 1.1 and h = 0.24 (g)  = 1.1 and h = 0.32 (h)  = 1.1 and h = 0.36 

   

Figure 3. Phase portraits and Poincaré maps for various system parameters. 

4  Concluding remarks 

A piece-wise nonlinear system for human rhythmic jumping is shown in this work. The system is based on 

coupling a SMD model with a thin rectangular plate excited by a base movement. In this study, the main objective 

was on the human response, where the results obtained showed that excitation frequency values before linear 
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resonance provide jumps with 2T periodic vibrations. For small values of human damping considered in the 

analyses, chaotic and quasi-periodic solutions were also found, which proves that, for certain sets of system 

parameters, it may be impossible to periodically jump over the plate. 
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