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Abstract. Data collected during the calibration process of bridge weigh-in-motion (BWIM) systems can be applied 

both for evaluating the behavior of the structure and for updating models and parameters. These model update 

techniques aim to adjust parameters of a structural model making predicted responses closer to the experimental 

behavior. Bayesian modeling is well applied to the present problem, as it makes possible the combination of 

previous knowledge and experimental data, allowing better parameter estimates. However, in some civil 

engineering applications the updated parameters may contain inherent variability during the experimental process, 

due to external factors such as environmental conditions, and may have considerable changes during the process. 

To consider this inherent variability, a hierarchical Bayesian model was adopted. Sampling from Markov Chain 

Monte Carlo (MCMC) methods is applied. It was also observed that there is an increase in variability with 

increasing vehicle weight. The introduction of this effect to the model was then studied, comparing 2 ways of 

considering this variation, both as a linear function of the expected signals for a given vehicle, and using the area 

under this predicted signal. Results for both numerical simulations and real bridge calibration data indicate that 

the hierarchical Bayesian approach proposed for the model update, including the scale factor according to vehicle 

weight, is able to perform properly, providing confidence intervals for predicted signals by unseen vehicles that 

best fit within the observed strains. 

Keywords: Model updating, hierarchical Bayesian modeling, bridge weigh-in-motion, scale factor, response 

prediction. 

1  Introduction 

Model updating is a technique with the objective of adjusting parameters of a given model so that the 

responses predicted by it are as close as possible to the experimental behavior. Calibrated models, often adopting 

finite elements, can be used, for example, to improve the strength prediction [1], to obtain a better estimate of 

lifetime for the structure [2] or predict behavior responses, and detect damage [3]  

Bridge Weigh-in-Motion (B-WIM) systems aim to obtain weights of vehicles passing over the bridge from 

strain measurements [4]. They are efficient tools for providing real time monitoring of traffic, with vehicles 

traveling at their usual speeds [5]. For this reason, these data have been applied with the objective of structure 

health monitoring (SHM) [4]. The influence line obtained in the calibration step can also be used to evaluate the 

structure of the bridge, dynamic amplification factors, and changes in this influence line, that can be related to 

temperature changes, and indicate loss of stiffness [6]. This calibration step can also be used for model update [7]. 

It allows the reduction of uncertainties about a parameter that, in the case of bridges whose structural design is 

unavailable, could be estimated from some geometric and normative data, but with little precision. 

Bayesian methods allow updating the knowledge about the parameters of interest, given the experimental 

results. A parameter is assumed to be an unknown fixed value and the uncertainty related to its value is reduced 

when increasing the quantity of data [8]. During B-WIM calibration step, depending on the number of planned 
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runs, varying transverse positions, speeds or trucks, the procedure can be long, lasting hours or days, subject to 

variations in winds and temperatures or any other variability inherent to the process. In general, results for different 

runs are recorded under different environmental conditions, which indicates that an inherent variability in the 

quantity of interest (QoI) is expected [7]. To include the inherent variability a hierarchical Bayesian model is 

proposed. In this case, the theoretical answers are functions of variables that follow probability distributions 

defined by additional parameters called hyperparameters, considered unknown and that will be updated during the 

process. The hierarchical framework allows a more flexible consideration regarding the QoI, including, for 

instance, an unknown mean and covariance matrix. As a result, confidence intervals can be estimated. [9]. This 

variability can include dynamic effects that are sometimes disregarded in the model, and by including the 

hierarchical framework, it can be seen that errors tend to be greater in heavier vehicles. This indicates the 

possibility of include some weighting for this error.  

In the present work it is proposed a hierarchical Bayesian model, including a scale factor with error term, to 

perform model updating employing a set of time-history strain measurements related to the response of a bridge 

structure due to the passage of heavy vehicles. Such data is available as a result of the calibration process of bridge 

weigh-in-motion systems. Numerically simulated data, which enables the complete knowledge about the target 

values of updated parameters, are employed for assessing the suitability of results.  

2  B-WIM systems and the application of calibration data for model updating 

Most BWIM systems in operation today are based on ideas established by Moses [10] in 1979, who suggested 

that an instrumented bridge with strain sensors could be used to obtain the weight of moving vehicle axles. The 

axle weights can be estimated as the ones that minimize the error between the measured and the theoretical 

responses, using the concept of bending influence line to calculate them. The strain signals recorded by sensors 

installed at the bottom of the beams are converted into bending moment. 

 𝑴 = ∑ 𝐸𝑗𝑍𝑗𝜀𝑗
𝐽
𝑗=1  , (1) 

where M is the measured bending moment, E is the elastic modulus of the beam, Z is the section modulus, ε are 

the strain obtained and J is the total number of beams. In this way, it is possible to consider that the j beams have 

different stiffnesses given by possible geometric differences in cross section or state of degradation [11]. 

The theoretical bending moment at each instant, represented here by 𝑀̂𝑘, results from the multiplication of 

the truck axle weights (Wi) by the ordinate of the influence line (I) related to its position at that moment. 

 𝑀̂𝑘 = ∑ 𝑊𝑖𝐼(𝐾−𝐶𝑖)
𝑛
𝑖=1  , (2) 

 𝐶𝑖 =
𝑑𝑖𝑓

𝑣
 , (3) 

where K is the total number of readings, n is the number of truck axles, Ci is the number of readings corresponding 

to the distance di between the first axle and the axle in question, which depends on the frequency f of acquisition 

of these readings, and the speed v that vehicle crosses the bridge. The distance between axles and truck speed are 

calculated from signals from FAD (Free of Axle Detectors) sensors, as shown in Kalin et al. [12], installed under 

the slab. 

The error function can be given by least squares and must be minimized. For this study, instead of calculating 

axles weights or obtaining the influence line, this system will be used to update the model, as in Gonçalves et al. 

[7]. During system calibration, it is possible to obtain the influence line for BWIM and also to update knowledge 

about a structural parameter, allowing to predict the response induced by any vehicle. The QoI is called , and 

here it will be defined as the constant EZ, elastic modulus multiplied by section modulus. The constant depends 

on beam dimensions and material. For some bridges where we don't have access to the design, it is difficult to 

define the characteristic strength of concrete or inertia and neutral line that depend on the amount of steel inside 

the beams, so  includes all stiffness information. Therefore, eq. (1) and eq. (2) can be rewritten as: 

 𝑦 = ∑ 𝜀𝑗
𝐽
𝑗=1  , (4) 

 𝑦̂𝑘 =
1

𝜃
∑ 𝑊𝑖𝐼(𝐾−𝐶𝑖)
𝑛
𝑖=1  , (5) 

where y is the measured strain and 𝑦̂𝒌 is the theoretical response at each instant. 
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Although the theoretical model represents reality well, it is expected that there will be some difference 

between the two answers. Therefore, the relationship between them is given by: 

 𝑦𝑘,𝑖 = 𝑦̂𝑘,𝑖(𝜃) + 𝜖𝑘,𝑖    or   𝑦𝑘 =  ℳ(𝜃,𝑊, 𝐶𝑖, 𝑘) + 𝜖𝑘,𝑖 (6) 

where 𝝐𝒌,𝒊 is an error between the theoretical and measured signal, at each reading k, at each truck pass i, here 

adopted as Gaussian, independent and equally distributed, with zero mean. There are theoretical simplifications, 

of course, that ignore important aspects such as dynamic effects, which end up being absorbed by this error. The 

theoretical influence line was adopted for the double-supported beam, fixed for the entire bridge. 

The error in eq. (6) indicates that a vehicle with different configurations from another should have deviations 

of the same order and magnitude. In this case, as the weight of the vehicle is directly proportional to its response, 

it is expected that the deviations between theoretical and experimental models are greater for vehicles that induce 

larger signals. A purely additive error may not be the best option for modeling. Therefore, it is proposed here to 

include the effect of the vehicle configuration on the variability between theoretical model and experimental 

results. An extra constant is then added to the error: 

 𝑦𝑘,𝑖 = 𝑦̂𝑘,𝑖(𝜃) + 𝛾𝑖𝜖𝑘,𝑖  (7) 

where i is constant at all instances and varies for each vehicle i. 

In this study, 2 ways of obtaining this constant will be compared: 

(a) The maximum expected strain, considering the bridge with unitary elastic modulus and section modulus. 

 𝛾𝑖 = 𝑎𝑟𝑔𝑚á𝑥𝑘(∑ 𝑊𝑖𝐼(𝐾−𝐶𝑖)
𝑁
𝑖=1 ) (8) 

(b) The area under the signal obtained with unitary E and Z, where tk is the time interval between 2 

measurements. 

 𝛾𝑖 = ∑ (∆𝑡𝑘 ∑ 𝑊𝑖𝐼(𝐾−𝐶𝑖))
𝑁
𝑖=1

𝐾
𝑘  (9) 

It would be possible to use the experimental data for these 2 values, that is, for each measured signal after 

crossing the vehicle, the maximum strain could be obtained or the area below that signal could be calculated. In 

the calibration step, this would lead to more accurate results, or closer to reality, since the measured signal varies 

a little with the transverse position and includes several variables not considered in the theoretical equation. 

However, it should be noted that the objective of this study is to update the model. From the distributions obtained 

for QoI, we can predict the signal that could be generated with the passage of any other vehicle with known 

characteristics. That is, if the objective is to estimate the signal of a vehicle before it crosses the bridge, it is 

important that the adopted value of i could be previously calculated. 

2.2 Hierarchical Bayesian Framework and Sampling Strategy 

Let us consider that  is the QoI to be estimated. For each calibration event there is a different value i in a 

total of N events. The values of  approximately follow a normal distribution. As the values of this constant are 

never negative, we decided to work with a lognormal distribution with parameters mean (μ) and variance (σ²). 

The error term in eq. (6) and eq. (7) can be described as a normal function of μϵ and σϵ². Here μϵ is zero and will 

be suppressed from the equations. The signal recorded in each event will be described as Ri, with a variable number 

of readings Ki, forming a set of values R = {R1, .. Ri, ...RN}. Applying Bayes' theorem, the posterior distribution 

of parameters μ, σ² and σϵ² given all measured values R can be written as: 

 𝑝(𝜇𝜃 , 𝜎𝜃
2, 𝜃, 𝜎𝜖

2|𝑹)⏟          
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

= 𝑝(𝑹|𝜃, 𝜎𝜖
2)⏟      

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑝(𝜃|𝜇𝜃 , 𝜎𝜃
2)⏟      

𝑝𝑟𝑖𝑜𝑟

𝑝(𝜇𝜃 , 𝜎𝜃
2, 𝜎𝜖

2)⏟        
ℎ𝑦𝑝𝑒𝑟𝑝𝑟𝑖𝑜𝑟

 (10) 

The hyperparameters are considered independent of each other, so the probability of the hyperprior is 

obtained from the multiplication of the independent distributions. For p(μθ) no prior knowledge is added. For the 

probabilities p(σθ²) and p(σϵ²) Inverse Gamma distributions were chosen, with their respective shape () and scale 

() parameters, as they are positive and conjugated to the Gaussian likelihood. For both prior and likelihood, the 

measures are independent. These distributions can be consulted in Gonçalves et al.[7]. 

To consider the scale factor parameter i, in all places where the term σϵ appears, it must be replaced by γiσϵ. 

The equation of the posterior is given by: 
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 𝑝(𝜇𝜃 , 𝜎𝜃
2, 𝜃, 𝜎𝜖

2|𝑅) ∝
1

(𝛾𝑖𝜎𝜖)
∑𝐾𝑖 𝑒𝑥𝑝 (−

1

2
∑ ∑ (

𝑦𝑖,𝑘−𝑦̂𝑖,𝑘(𝜃)

𝛾𝑖𝜎𝜖
)
2

𝐾
𝑘=1

𝑁
𝑖=1 )

⏞                          

𝑝(𝑅|𝜃, 𝜎𝜖
2
)

 ×  
1

(𝜎𝜃)
∑𝑁∏𝜃𝑖

𝑒𝑥𝑝 (−
1

2
∑ (

𝑙𝑜𝑔(𝜃𝑖)−𝜇𝜃

𝜎𝜃
)
2

𝑁
𝑖=1 )

⏞                        

𝑝(𝜃|𝜇𝜃 , 𝜎𝜃
2
)

  

                                                                                         ×   (
1

𝜎𝜃
2)
𝛼𝜃+1

𝑒𝑥𝑝 (−
𝛽𝜃

𝜎𝜃
2)⏟            

𝑝(𝜎𝜃
2)

(
1

(𝛾𝑖𝜎𝜖)
2)
𝛼𝜖+1

𝑒𝑥𝑝 (−
𝛽𝜖

(𝛾𝑖𝜎𝜖)
2)⏟                  

𝑝(𝜎𝜖
2)

 (11) 

This posterior does not have a closed solution. To access this information, the Gibbs sampler will be used. 

This is a special case of the Markov Chain Monte Carlo (MCMC) sampling strategy, which comprises a series of 

techniques for iteratively generating samples from approximate distributions until the desired distribution is 

reached. Full conditional distributions can be obtained by deriving the posterior with respect to the desired 

parameter [13]. The following set of equations is used: 

 𝑝(𝜇𝜃|. ) ∼ 𝒩 ( ∑
𝑙𝑜𝑔(𝜃𝑖)

𝑁
,
𝜎𝜃
2

𝑁
) (12) 

 𝑝(𝜎𝜃
2|. ) ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎 (

𝑁

2
+ 𝛼𝜃 ,

∑ (𝑙𝑜𝑔(𝜃𝑖)−𝜇𝜃)
2𝑁

𝑖=1 −2𝛽𝜃

2
) (13) 

 𝑝(𝜎𝜖
2|. ) ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎 (∑

𝐾𝑖

2

𝑁
𝑖=1 + 𝛼𝜖,

1

2
(
∑ ∑ (𝑦𝑖,𝑘−𝑦̂𝑖,𝑘(𝜃))

2
𝐾
𝑘=1

𝑁
𝑖=1

𝛾𝑖
) + 2𝛽𝜖) (14) 

 𝑝(𝜃𝑖|. ) ∝
1

𝜃𝑖
. 𝑒𝑥𝑝 (−

1

2
(
∑ ∑ (𝑦𝑖,𝑘−𝑦̂𝑖,𝑘(𝜃))

2
𝐾
𝑘=1

𝑁
𝑖=1

(𝛾𝑖𝜎𝜖)
2 + 

∑ (𝑙𝑜𝑔(𝜃𝑖)−𝜇𝜃)
2𝑁

𝑖=1

𝜎𝜃
2 )) (15) 

As conjugate prior distributions were used, the full conditional distribution of most parameters results in 

standard distributions that are easy to sample [13]. The exception is p(θ|.). It is possible to approximate it to a 

normal distribution. The parameters of this approximate normal distribution can be obtained in Gonçalvez et al.[7]. 

2.3 Uncertainty Propagation 

Uncertainties quantified through the hierarchical model can be propagated, allowing estimates of the 

monitored quantity for vehicles other than the calibration ones [14]. In this study, this implies the possibility of 

estimating confidence intervals for strains for any vehicle [8]. This can be applied to assess the feasibility of the 

model update strategy for real cases, where there is no prior knowledge about the parameters. It is possible to do 

a cross validation, using some vehicles to update the model and others to obtain strains. In addition, the propagated 

uncertainties can be used for reliability analysis of the necessary parameters, which can be important in the safety 

assessment of structures and decision-making like authorizations for special loads, for example. 

In this study the predicted signals are obtained as in eq. (7). At each iteration, a value for θi is sampled from 

a normal distribution using mean μθ and variance σθ² obtained in the model update step using the calibration 

vehicles. Adopting the theoretical influence line, vehicle weights and σϵ², strain signals are generated, obtaining 

probability distributions and confidence intervals 

3  Application in numerical simulations 

To evaluate the proposal of including a constant proportional to the weight of the vehicles together with the 

error between the theoretical and measured strain, a numerical simulation was adopted, where the bridge structure 

is modeled as a simply supported Euler-Bernoulli girder with total length of 15 m. Seven types of vehicles, from 

2 to 8 axles, were modeled as a sprung mass system described in Carraro et al. [15]. Vehicle axle weights and 

positions in relation to the first axle are in Table 1. Damping and stiffness of each axle were also included in the 

model. For each vehicle, 50 signals were generated, considering 10 runs for a speed of 16 m/s, 30 runs for 20 m/s 

and 10 runs for 24 m/s. The exact velocity varies around these averages, with a coefficient of variation of 5%. It 

was assumed that the vehicle's speed remains constant throughout the time it crosses the bridge. 
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Table 1. Weights (in ton) and axle positions in relation to the first (in m) for the calibration trucks  

Vehicle ID GVW W1 W2 W3 W4 W5 W6 W7 W8 d1 d2 d3 d4 d5 d6 d7 d8 

1 16 6 10       0 4,25       

2 23 6 8,5 8,5      0 3,7 5,5      

3 33 6 10 8,5 8,5     0 3,7 7,4 9,2     

4 43 6 8,5 8,5 10 10    0 3,7 5,5 9,2 12,9    

5 53 6 8,5 8,5 10 10 10   0 3,7 5,5 9,2 12,9 16,6   

6 57 6 8,5 8,5 8,5 8,5 8,5 8,5  0 3,7 5,5 9,2 11 14,7 16,5  

7 67 6 8,5 8,5 8,5 8,5 8,5 8,5 10 0 3,7 5,5 9,2 11 14,7 16,5 20,2 

 

For the bridge, mass per unit length was considered equal to 1000kg/m and damping coefficient of 0.05. For 

each simulation, a different θi was considered, sampled from a Gaussian distribution with mean 5GPa and standard 

deviation 0.5GPa. In addition, class B roughness [16] and a white noise (SNR) of 20 were considered.  

For Gibbs sampler, 10000 iterations and 20% burn-in were used. The variables µθ, σθ, and σϵ were considered.  

The actual values for µθ and σθ used in the simulation are precisely known and therefore are used as 

calibration criteria. On the other hand, as the parameter σϵ comprises all the reasons for it to deviate from the 

model, its exact value is not known. For the hierarchical models  =  = 0,5,  = 10-3 and  = 0. 

4  Results 

Adopting the hierarchical approach, it can be seen that the values of the mean and standard deviation of QoI 

achieved are quite close to the exact values as presented in Figure 1, with i = 1. There is no rule about how the 

variability of  is affected by the weight of vehicles. It is important to note that for shorter vehicles the generated 

signal has less data and this can contribute to the results deviating from the real value. It was noticed that the 

greater the weight of the vehicle, the greater the values of the standard deviation of the error. This may indicate, 

for example, that heavier vehicles may cause greater vibrations on the bridge, absorbed by this error variable. It is 

understood, then, that the hierarchical model, without any correction for σE, is adequate to estimate µθ and σθ, 

however the estimates for σE may be inadequate between different vehicles, especially if the model is used to 

propagate uncertainties. 

 

 
Figure 1. Histograms for the MCMC samples of each variable considering i=1, as a function of the vehicle ID 

Figure 2 shows the behavior in cases (a) and (b) indicated in item 2. Inserting the scale factor given by the 

maximum expected strain (a), results in mean and standard deviation values of  very similar to the case without 

it. A greater difference occurs in the variable , which has lower order, given that the scale factor considers EZ 

to be unitary, so it is a high value. In this case, lighter vehicles have bigger errors, contrary to what happened 

before. For case (b), in which the area under the entire expected signal is used,  and  are still very close to the 

exact value. Larger vehicles have more assertive values. The error deviation becomes greater for lighter vehicles. 

To illustrate the advantages of using a multiplicative constant for , Figure 3 is presented. The images on 

the left side indicate that after a calibration step carried out with heavy vehicles with 8 axles, distributions are 

obtained for   and  and these data is used to predict strains for the passage of a 2-axle vehicle. The generated 
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signal would be within the blue region, considering a confidence interval of 95%. However, it can be seen that the 

real signal of a 2-axle vehicle does not oscillate so much. When applying the scale factor, the predicted region for 

the signal can be much smaller, represented here by the pink spot, adjusting much better to the real signal. 

 

 
Figure 2. Histograms for the MCMC samples of each variable for cases (a) and (b), as a function of vehicle ID 

 
Figure 3. Uncertainty propagation for two distinct cases. Confidence interval of 95%. 

 

In the images on the right, the opposite occurs. In case the system calibration is carried out with 2-axles 

vehicles, predicted signals will consider that there will be little variability. However, when passing a truck with 8 

axles, the region predicted for the occurrence of the signal, with a confidence interval of 95%, would be blue. In 

this case, the heavy vehicle causes greater oscillation, so when disregarding the weighting of the error, estimated 

signals may not represent well the behavior of this bridge. Applying the scale factor, the pink interval is obtained. 

When the light vehicle passes over the bridge calibrated with the heavy vehicle, model (b) seems to make a 

more correct fit to the signal behavior than model (a). However, in the case where a light vehicle is used to calibrate 

and a heavy vehicle crosses the bridge, it is noted that when considering i as the area below the expected signal, 

it generates a region with too much variability, also not representing the signal so well. It is understood that using 

the maximum expected strain (a) leads to a better fit, especially in the initial part. 
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5  Conclusions 

A bridge model update technique was presented, adopting hierarchical Bayesian modeling. The study 

proposed to introduce a multiplicative error constant, adjusted according to the weight of the vehicles. Synthetic 

BWIM data were adopted and the objective is to obtain the EZ value, which is often unknown. This value can be 

used to predict strain signs that occur on the bridge during the passage of other vehicles. The hierarchical Bayesian 

approach allows including confidence intervals and reliability analysis.  

The effects of including this scale factor were more relevant on the variable , with minor changes in mq 

and sq. It is noticed that, disregarding the scale factor, when the calibration is performed with a type of vehicle 

and the strain signal generated by a vehicle with different weight is predicted, the region where the signal would 

be does not represent the reality. The adoption of a factor proportional to the estimated signal resulted in a region 

that better represents the signal than adopting the entire area under the signal.  

It is important to be aware about the difference between experimental and observational data. This numerical 

model is useful for testing the method, but it must be applied in dada obtained in real bridges. It is recommended 

that more quantitative evaluations be carried out, using several signals, since here the analysis presents only 1 

deformation signal and the evaluation was visual. Although more studies are necessary, it is understood that the 

adoption of this error weighting is very important for the model update. 
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