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Abstract. Iterative Krylov methods, like Generalized Minimal Residual (GMRES) and Full Orthogonalization
Method (FOM), are normally used for the solution of sparse and nonsymmetric linear systems from Computa-
tional Mechanics problems. In practice, restarted versions, are used to reduce storage and orthogonalization costs.
However, numerical experience shows that these methods may present stagnation or slow convergence. The Sta-
tionary method is older, simpler to understand and implement, but usually not completely effective. Contrarily, the
Krylov method has a more recent development and is more effective than the former, but the analysis is usually
harder to understand with difficulties in selecting its parameters. A cycle of a proposed hybrid method consists
of n Stationary iterations of Richardson followed by m × k iterations of the restarted GMRES, where n, m and
k are values much smaller than the dimension of the non-symmetric matrix. Such cycles can be repeated until
convergence is achieved. The advantage of this approach is in the opportunity to allow better performance of its
individual properties. This combination of methods is competitive from the point of view of helping to accelerate
convergence with respect to the number of iterations for some linear problems. We are going to present compu-
tational experiments to show the advantages and the main problems raised from the perspective of the proposed
hybrid method.
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1 Introduction

In this work, we focus on iterative methods to solve linear systems of equations of the form

Ax = b (1)

where A ∈ Cn×n is non-singular and b, x ∈ Cn. Iterative methods refer to a wide range of techniques that use
a successive approximation to obtain more accurate solutions to a linear system at each iteration. Some ways to
improve them are discussed by introducing static and dynamic parameters.

A cycle of Richardson-GMRES(n,m, k) consists of n Richardson iterations followed by k cycles of GMRES(m).
Such cycles can be repeated until convergence is achieved. The result of any one cycle serves as the initial guess for
the next cycle. The proposed method may also be considered a preprocessing, in which GMRES(m) is preceded by
n Richardson iterations. The advantage in this approach is in the opportunity to use moderate m, which results in
time and memory saving. Because the number of inner products among the vectors of iteration is about O(m2), u-
sing a moderate m is particularly attractive on message-passing parallel architectures, where inner products require
expensive global communication (Sidi, Shapira, 1998).

This paper is organized as follows. In §2, we introduce the formulation for Stationary methods to solve linear
systems. In §3, the non-stationary methods it is presented, specifically focusing on GMRES. Numerical results are
presented at §4 and the conclusions are presented at §5 showing that the hybrid strategy improves the convergence
of Richardson and standard GMRES(m).
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Foz do Iguaçu, Brazil, November 21-25, 2022



Template file for CILAMCE-2022 full-length paper. Hybrid Algorithm for Nonsymmetric Linear Systems.

2 Iterative Methods for Linear Systems

2.1 Stationary Methods

A simple iteration to solve 1 can be described by a recurrence of the form

xk+1 = xk +Krk, (2)

where K is a real n× n matrix and rk is the residual vector defined by rk = b−Axk in each iteration. When the
vector rk reaches the zero vector, the desired solution of the linear system Ax = b is reached.

Matrix K is often referred to as the feedback gain matrix and rk represents the residual vector between
the input b and the output Axk (Schaerer, Kaszkurewicz, 2001). The linear problem is equivalent to a regulator
problem of forcing the output to regulate the constant input b, by a suitable choice of the controller, in this case,
the matrix K (Bhaya, Kaszkurewicz, 2006). In the procedure of building the matrix K, each method differs one
from another.

Two types of iterative methods are very popular: Stationary and Non-stationary methods. The Stationary
method is older, simpler to understand and implement, but usually not completely effective. The Non-stationary
methods have a more recent development and more effective, but the analysis is usually harder to understand. To
use a control perspective for these iterative methods, the equation (2) is modified. Therefore, the approximate
solution takes the form

xk+1 = xk +K(b−Axk) = (I −KA)xk +Kb. (3)

The choice of constant matrix K and the relation (I − AK) characterize a stationary method. It can be
observed that the particular selection of K = A−1 produces that the iterative method converges in only one
iteration but this is impractical for large matrices. Conversely, Non-stationary methods differ from stationary
methods because the matrix K and other parameters change at each iteration. Generally, these parameters are
computed by taking the inner product of residuals, or other vectors with information about previous iterations.

Observe that, the residual rk is obtained from equation (2) as (Schaerer, Kaszkurewicz, 2001):

rk+1 = (I −AK)rk. (4)

An improvement of iterative methods can be made by updating dynamically the feedback matrix Kk, i.e.,
K = Kk. Some non-stationary methods use the control Lyapunov function approach to obtain the appropriate
parameters for every iteration (Bhaya, Kaszkurewicz, 2006). A first example of a non-stationary method is Kk =
αkI , where αk is a scalar sequence and I is an identity matrix of an appropriate dimension. If αk is computed in
terms of the residual vector rk, the resulting method is referred to as Adaptive Richardson (Greenbaum, 1997).

For this example, the equation (4) can be written as

rk+1 = rk − αkArk. (5)

In control jargon, the value αk is the control parameter and rk the state. A control Lyapunov function can be
used to design an asymptotically stabilizing state feedback control for equation ( 5) for driving the state rk to the
origin (Bhaya, Kaszkurewicz, 2006). When the linear system has an arbitrary nonsingular matrix A, the candidate
Lyapunov function can be defined as:

V (rk) := ⟨rk, rk⟩ , (6)

from which the αk expression is chosen as

αk =
⟨rk, Ark⟩
⟨Ark, Ark⟩

, (7)

to guarantee ∆V (rk) < 0, and in that way, proves that the residual norm of vector rk decreases monotonically to
finally get the zero vector. In particular, this method is called Orthomin(1) (Greenbaum, 1997).

When the matrix is Hermitian positive definite, the candidate function of Lyapunov is defined by V (rk) :=〈
rk, A

−1rk
〉
, from which

αk =

〈
Ark, A

−1rk
〉

⟨Ark, A−1Ark⟩
=

⟨rk, rk⟩
⟨rk, Ark⟩

,

making ∆V < 0, which corresponds to Richardson’s method for symmetric matrices. The method can be viewed
as a steepest descent method in which the step size αk is chosen following a control Lyapunov function (Green-
baum, 1997). From a control viewpoint, Richardson’s method can be viewed as the application of proportional
controller with a time-varying gain αk (Bhaya, Kaszkurewicz, 2006).
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3 Non-Stationary methods

3.1 Krylov Methods

The GMRES method builds an orthogonal basis for the Krylov subspace

Km(A, r0) = span{r0, Ar0, ..., A
m−1r0} (8)

using the modified Gram-Schmidt process (Arnoldi’s method). This method can be written in matrix form as (Saad,
Schultz, 1986).

AQm = QmHm + hm+1,mqm+1ξ
T
k = Qm+1Hm+1,m, (9)

where columns of matrix Qk are an orthogonal basis for Km(A, r0) and Hkan upper Hessenberg matrix.
In the GMRES method, the approximate solution xm is taken to be of the form xm = x0 +Qmym for some

vector ym, which is obtained by solving the minimization problem

min
y

∥r0 −AQmy∥2. (10)

The (full) GMRES start with k = 0 up to either convergence or dim(x). This makes the algorithm impractical
because of increasing stage and computational work requirements when the number of iterations needed to solve
the linear system is large. The restarted GMRES algorithm (denoted as GMRES(m)) restarts the GMRES every
m steps.

The GMRES(m) used in this work is presented in the algorithm 1.

Algorithm 1 The j-th cycle of GMRES(m).
Require: Given A, b, m, k .

1: ri = b−Axi

2: Compute m iterations of restarted GMRES to solve Aei = ri;
3: xi = xi + ei
4: ri = b−Axi

5: if ∥ ri ∥2< tolerance then
6: stop;
7: else
8: ej = ei
9: end if

10: j = j + 1

3.2 The proposed method: Richardson-GMRES(n,m,k)

Our new method is denoted as Richardson-GMRES(n,m, k), where n is the number of Richardson iterations,
m the dimension of the Krylov subspace and k is the number of cycles of GMRES(m). Any cycle of the proposed
method cover n iterations of Richardson method and m× k iterations of GMRES.

The pseudocode for the j-th cycle of the proposed method maned as Richardson-GMRES(n,m, k) is pre-
sented in the Algorithm 2.

4 NUMERICAL RESULTS

We show the potential of the proposed method by presenting experimental results from a variety of problems.
We tested 4 problems. The first example is a systems arising from a finite difference discretizations of the Poisson
equation on rectangular grids using a five-point difference approximation. The following examples come from the
Matrix Market Collection.

For problems in which the right-hand side are not specified, the vector b is generated randomly using a
uniform distribution with values between the minimum and maximum values A(i, j). Two kinds of problems are
consideredwith

A zero initial guess is used for all problems. If a right-hand side es not provided, we generate a random
right-hand side. We stop the algorithm when the relative residual norm is less than the convergence tolerance, i.e.,
when ∥rj∥

∥r0∥ ≤ 10−12 or when the maximum number of cycles is exceeded (j ≤ 1000).
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Algorithm 2 The j-th cycle of Richardson-GMRES(n,m, k).
Require: Given A, b, n, m, k, xj−1, ej−1 .

1: xi = xj−1

2: ei = ej−1

3: Compute n iterations of Richardson to solve Aei = ri;
4: for i = 1 : n do
5: ri = b−Axi

6: αi =
⟨ri,ri⟩
⟨ri,Ari⟩

7: ei = ei + αiri
8: end for
9: ri = b−Axi

10: Compute m× k iterations of restarted GMRES to solve Aei = ri;
11: xi = xi + ei
12: ri = b−Axi

13: if ∥ ri ∥2< tolerance then
14: stop;
15: else
16: ej = ei
17: end if
18: j = j + 1

Table 1. The matrices information.

Matrix size nnz Condest Aplication area

Poisson2D 10000 3.01E+3 49600 Mechanics

add20 2395 13151 1.20E+4 Circuit simulation

sherman1 1000 3750 2.26E+4 Computational fluid dynamics

sherman4 1104 3786 7.16E+3 Computational fluid dynamics

These matrices are presented in Table 1 . The columns labeled size and nnz are for matrix dimension and
number of non-zeros entries. Condest refers to the condition number. All test are run on a desktop machine with
Intel Core i7-6700T CPU @ 2.80GHz X 4 and 8 GB of main memory, by using MATLAB R2016b for Windows 10.

We chose the initial restart parameter m = 30 for GMRES(30) because it is a common choice and often the
default in general linear solver packages such as PETSc (see Balay et al., 2001). In the subsection §4.1 we compare
Richardson, GMRES(30) and Richardson-GMRES(n,m, k) using the best parameter values found by varying n
between 100 and 500 in steps of 100; m between 1 and 5 in steps of 1 and k between 1 and 10 in steps of 1. The
nonconverging problems are denoted by NC in Tables 2.For the GMRES(m) executions, the MATLAB R2016b
functions were used.

In Section §4.2, the proposed method is used with an incomplete LU preconditioner to compare the efficiency
with the same matrices and comparative methods.

4.1 Comparison to standard methods

Experiment 1. Simple example for a common Partial Differential Equations encountered in various areas of
engineering:

∆u = f in Ω (11)

u = 0 on Γ (12)

where Ω is now the rectangle (0, l1)× (0, l2) and Γ its boundary. Both intervals are discretized uniformly.
The proposed method with parameter values n = 400, m = 5, and k = 3 has the lowest number of cycles

with respect to the standards GMRES(30) and Richardson methods. The latter fails to converge (see Figure 1).
The advantage of having small values of m allows for very low computational costs (Saad, 2003).
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Figure 1. The convergence curves of matrix Poisson2D.

Experiment 2. We considered a group of benchmark problems from Applied in Computational Mechanics.
All matrices in this group are non- symmetric with high conditioning numbers (see Table 1)

We consider the matrices sherman 1 and sherman 4. Both matrices are real non-symmetric from computa-
tional fluid problems. The proposed method has the lowest number of cycles with respect to the GMRES(30) and
Richardson standard. The latter fails to converge. In both cases, the best values of n and k are the same. See
Figures 2 and 3 respectively.
In the case of add20, the proposed method have the smallest number of cycles to achieve convergence (see Figure
4). The best values are n = 500, m = 1 and k = 9.
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Figure 2. The convergence curves of matrix Sherman1.

4.2 Using ILU preconditioning

A common strategy in the iterative solution of linear systems is the use of preconditioners. In this work
we use the incomplete LU factorization denoted as ILU to compare the efficiency of the proposed method, with
respect to preconditioned systems. Specifically, we used the ILUTP version of MatLab 9.1.0 (R2016b) with the
value droptol = 10−6. For fairness in comparing the performance of the preconditioners for improving the rate of
convergence of the methods, the tables do not include the running time for computing the ILU pprocess.

In Table 3, it is shown experimentally that all methods with a preconditioner converge with very fast conver-
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Figure 3. The convergence curves of matrix Sherman4.

0 10 20 30 40 50 60 70 80 90 100

Cycles

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

||
r j||

/|
|r

0
||

Add 20

RG(n,m,k)

Richardson

GMRES(m)

Figure 4. The convergence curves of matrix Add20.

Table 2. Numerical results for matrices without ILU preconditioning.

Matrix Richarson GMRES(30) RG(n,m,k)

cycle time cycle time cycle time

Poisson2D NC - 71 2.6778 34 2.913

add20 NC - 70 0.370 48 0.878

sherman1 NC - 198 0.590 57 0.373

sherman 4 NC - 30 0.103 7 0.091

gence with respect to the numbers of cycles without a preconditioner, but in some cases, a considerable increase
in execution time is given. In general, the selection of an appropriate preconditioner requires some a priori knowl-
edge of the problem. For simplicity we choose the ILU version of Matlab, even though sometimes requires large
memory requirements which exceed the computer capacity or produce Matrix close to singular or badly scaled.
This is why we get the Wanring message during method execution.
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Foz do Iguaçu, Brazil, November 21-25, 2022



S. Marin, C. M. Vera, J. Cabral, C. Schaerer

Table 3. Numerical results for matrices with ILU preconditioning. The WM means that during execution a near-
singular or poorly scaled matrix alert was given.

Matrix Richarson GMRES(m) RG(n,m,k)

cycle time cycle time cycle time

Poisson2D 8 1.611 WM - 2 113.593

add20 WM - WM - 2 5.708

sherman 1 6 0.008 WM - 2 0.386

sherman 4 6 0.005 WM - 2 0.241

5 CONCLUSION

A Hybrid Algorithm based on stationary and non-stationary for solving linear systems has been presented
and tested. We find that the selected stationary method (Richardson) cannot reach convergence by itself, but by
combining it with a non-stationary method (GMRES(m)), it does achieve convergence and even with fewer cycles.
It is important to remark that the convergence is improved for all tested cases. Moreover, in order to achieve an
improvement in terms of the number of cycles of convergence, it is important to choose adequately the parameters.
Also, experimental results show that the ILU preconditioning improves the method proposed but has difficulties for
the Richardson and GMRES(m), because the ILU sometimes yields an ill-conditioned system. For the problems
presented, the superiority of the proposed method, denoted as RG(n,m, k) over Richardson and GMRES(30) is
clear, but it has difficulty selecting the best set of parameters a priori. However, we show that with very small
values of m, we achieve very good results. Making our proposal quite interesting from a computational point of
view.
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