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Abstract.  A numerical model with a discrete and explicit representation of steel fibers is used for modeling steel 

fiber reinforced concrete (SFRC) beams subjected to torsion. The numerical model is a combination of a fiber 

cloud, cement matrix, and the fiber-matrix interaction. It is well known that the addition of steel fibers to concrete 

increases the torsional and rotational strength, in addition to greater cracking control. In this context, this work 

aims to assess the capability of the numerical model to simulate experimental tests available in the literature of 

SFRC beams under torsion with steel fiber rates of 25 kg/m³ and 50 kg/m³. The results demonstrated that the 

numerical model proposed is appropriate to represent the failure process of beams under torsion and the numerical 

tool can be very useful in future studies in combination with analytical equations proposed by standard codes. 
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1  Introduction 

It is well known that the addition of steel fibers in the cement matrix improves the post-cracking behavior of the 

composite. The improve of toughness and ductility is result of “tension bridges” created by the presence of the 

fibers crossing the cracks, which avoid an abrupt crack propagation. Thus, the material can be used as secondary 

or primary reinforcement in structural elements, as it is suggested in some standards and recommendations.  

Among the models presented in the literature stands out is the designing model presented by fib Model Code 

2010 [1]. This model adopts as the standard test for obtaining designing parameters, the 3-point bending test, 

according to EN 14651 [2]. From the force x CMOD curves (Linear measurement of the notch opening) obtained 

in these tests, residual strengths are evaluated and them used for the definition of the constituive model that 

describes the tensile behavior of the composite under tension, assuming a rigid-plastic or a linear elastic behavior. 

Such models are used to obtain the residual strengths in service (fFts) and ultimate (fFtu) conditions, calculated based 

on the values fR1 (equivalent CMOD of 0.5 mm) and fR3 (equivalent CMOD of 2.5 mm), as shown in eqs. (1) and 

(2), respectively. 
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Thus, SFRC structural members in pure torsion, without passive reinforcement, the following condition is 

required: 
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However, for SFRC structural members with passive reinforcement, the fib model Code 2010 [1] does not present 

a closed solution, instructing that the structural members must be tested in real scale. Thus, the objective of this 

work is to use a multiscale model proposed by Bitencourt Jr. [16] to simulate the SFRC beams in pure torsion in 

order to assess the capability of this approach to capture the failure process and to validate the numerical tool to 

be used in future research investigations in combination with experimental tests.  

2  Methodology 

To simulate the behavior of the SFRC structural members, a multiscale finite element model proposed by 

Bitencourt Jr. [3] was used, including the description of the crack propagation processes.  Recently, Trindade et 

al. [4] used this approach to aid the design of beams reinforced with steel fibers and conventions rebars, obtaining 

promising results. 

This numerical model allows the representation of the composite in 3 distinct phases: cement matrix, steel fibers, 

and fiber-matrix interaction. Initially, the geometry of the structural members is modeled using the preprocessing 

program GiD. A cloud of steel fiber is generated using a uniform isotropic random distribution and considering 

the wall effect of the mould. Then, coupling finite elements are inserted for simulating the interaction between the 

concrete elements and the truss elements. This coupling element for 3D simulations is a 5-noded tetrahedral 

elements and has the same node coordinates as the corresponding concrete element, and an additional internal 

node that corresponds to the node of the reinforcement inside the domain of the corresponding concrete element. 

2.1 Concrete modeling 

The concretes model is discretized using 4-noded tetrahedral elements and its nonlinear behavior is described by 

a continuous damage model, proposed by Cervera [5], with independent damage variables to describe its tensile 

and compression behavior. The 4-noded tetrahedral element and its constitutive model is illustrated in Fig. 1a. To 

avoid numerical convergence problems, an implicit and explicit integration scheme (Impl-Ex) is employed to 

integrate the constitutive model. This Impl-Ex integration scheme can be better explained in Oliver [6] and 

Prazeres [7]. 

2.2 Reinforcement modeling  

Steel fibers and rebars are represented by 2-noded truss elements. This element only allows deformations in their 

axial direction. Thus, for constitutive reasons, stiffness matrices and the internal forces vector are only dependent 

on the element axial direction. The material behavior is described by an elastoplastic model, as shown in Fig. 1b, 

where the model presents a branch of linear deformations until σy followed by a branch of permanent plastic 

deformations (H = 0). The branch of plastic deformations can have hardening (H>0), or softening behavior (H<0). 

A detailed description of the constitutive model can be found in Simo and Hugles [8] and Souza Neto [9]. 
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Figure 1. Finite elements and their respective constitutive models for each phase of the composite             

(adapted from Trindade et al. [15]). 

2.3 Reinforcement/concrete interaction  

The concrete and reinforcements (steel fibers and rebars) are initially discretized in finite elements in a totally 

independent way. Then, coupling finite elements (CFEs) proposed by Bitencourt Jr. [10] are inserted to describe 

the interaction between the non-matching finite element meshes. As stated, this element has 5 nodes, 4 nodes from 

the concrete element and 1 from the reinforcement (located inside the corresponding concrete element).  

  The CFEs define the compatibility of displacements and transfer forces between the non-matching meshes.  Thus, 

can be defined as a relative displacement [[U]] as the difference between the displacement of the coupling node 

(Cnode), shown in Fig. 1c, and the displacement of the material point (Xc), defined by the concrete finite element 

shape functions [Ni]. The interaction force arises from following equation: 
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Considering that the fibers deformation only occurs in its axial direction, the formulations start from the local 

coordinate systems of the element. Therefore, the coupling element internal force FCFE
int and the stiffness matrix 

KCFE are given by eq. (5) and eq. (6). 
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To find the global correspondent of FCFE
int, it should consider the [R] orthogonal rotation matrix between the local 

and global coordinate systems. Such components compose the solid internal force and its stiffness matrix, 

presented by Bitencourt Jr. [10] and described by eq. (7) and eq. (8), where [A] is the finite element assembly 

operator. 

 
int int int int .C C CFE CFE F FF A F A F A F= + +  (7) 

 .C C CFE CFE F FK A K A K A K= + +  (8) 
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3  Multiscale model 

The numerical model is assessed through the simulations of SFRC beams tested by Facconi et al. [12].  In this 

work, the authors divide the specimens into 3 categories: PC, SFRC25 and SFRC50 with the same geometry. The 

PC category includes pure concrete beams, the SFRC25 includes SFRC beams with a fiber density of 25 kg/m³ 

and, the category SFRC50 includes SFRC beams with fibers density of 50 kg/m³ dispersed in the cementitious 

matrix. For geometry, the beams have a total length of 2400 mm and constant rectangular cross section of 300 x 

300 mm.  

To induce twisting to the specimens, Facconi et al. [12] applied a vertical P/2 load on side arms at beams head 

with the same cross section. All specimens are composed of 4 longitudinal reinforce bars with Ø18 mm diameter 

and with Ø10 mm diameter cross spaced every 50 mm to avoid deformations during the load application and to 

avoid cracks formation. Should be noted that the beams head boundary conditions allow the free rotation of the 

cross section. At central region with 1200 mm length is used as a monitoring region for the control of the cross 

section relative rotation and the cracks opening control. 

Table 1 presents the finite element meshes used. Table 2 presents the concrete parameters used in the constitutive 

model proposed by Cervera [5]. As can be seen, the same finite element mesh was employed in the SFRC25 and 

SFRC50 simulations, and to consider the distinct number of fibers, a geometric proportionality (cross section) was 

adopted.  

 

Figure 2. Numerical models constructed: a) loading and boundary; b) representation of longitudinal and 

transverse reinforcements; and c) cloud of steel fibers. 

Table 1. Finite element meshes. 

 

Table 2. Mechanical properties of concrete. 

  

PC SFRC25 SFRC50

2-noded truss 880 67.930 67.930

4-noded tetrahedral 17.746 10.582 10.582

5-noded tetrahedral 884 90.284 90.284

Total 19.510 168.796 168.796

Finite element model
Mesh

PC SFRC25 SFRC50

fc0 25,00 25,00 25,00 MPa

ft 1,76 1,92 1,68 MPa

Ec 31.000 33.000 28.300 MPa

ν 0,20 0,20 0,20 -

Gf 0,10 0,25 0,25 N/m

Compressive parameters

Concrete parameters Unit

A = 1,0 e B = 0,89

Finite element model
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Table 3. Mechanical properties of fiber-matrix interaction (CFEs). 

 

In relation to the coupling elements, fiber-concrete interaction parameters were defined based on the fiber pullout 

studies performed by Mineiro et al. [14]. Thus, the parameters obtained for a uniform stress distribution model 

were applied along the fiber. Table 3 summarizes mechanical parameters adopted to describe the fiber-concrete 

interaction. A study of convergency was also performed to better understand the influence of the Impl-Ex scheme., 

considering 1000, 4000 and 8000 load steps. It is observed that 4000 load steps is enough to obtain the equilibrium 

curve. 

4  Discussion of results  

As results of the analyses, the relative rotations of the cross-sectional section were obtained, in the monitoring 

region, and its corresponding torque. In the Fig. 3, the results obtained for all numerical models are shown. As can 

be seen, numerical model - PC obtained torque results and rotations consistent with those presented by Facconi et 

al. [12]. In Tab. 4 can be seen that the maximum torque variation obtained by the model is 3,4% in relation to 

specimen tested in the literature. However, when the analysis is performed in relation to the torque corresponding 

to the twist presented, it is noted that the error decreases to 3,3%. 

  The numerical model SFRC25 presented a good representation of the post-cracking material behavior. It can be 

seen from Fig.3 that the curve obtained for the post-cracked regime decreases like the specimen tested by Facconi 

et al. [12]. Regarding the maximum torque obtained, it is observed that the error was 13,3%, but when compared 

with the corresponding twist presented in the literature, there is a decrease in the error to 7,2%, as shown in Tab. 4. 

For the numerical model SFRC50, a good representation of the behavior of the material in the post-cracked regime 

is obtained, as shown in Fig. 3. As is shown in Tab. 4, to the maximum torque obtained the error was 6,2%, but 

when compared with the corresponding twist presented in the literature, there is a decrease in the error to 5,2%. 

 

Figure 3. Twist vs Torque curves. 

 

τmax 15,67 MPa

τf 3,33 MPa

S1 0,0001 mm

S2 0,0001 mm

S3 5,69 mm

α 0,70 -

Unit
CFE - Fibers/concrete 

interaction
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Table 4. Summary of the responses obtained. 

 

5  Conclusions 

To simulate the behavior of steel fiber reinforced concrete beams in pure torsion, a multiscale finite element model 

proposed by Bitencourt Jr. [3] was employed.  The numerical analyses were performed considering as the reference 

the experimental tests performed by Facconi et al. [12]. The results obtained demonstrated that the numerical 

model was able to represent the structural member behavior under torsion, including the post-cracking regime. 

The curves in terms of rotation and torque values obtained present an error of 3.3% - 13.3% when compared to 

experimental results. Based on these results, the numerical model will be used as an aid tool in the design of SFRC 

beams under torsion in combination with experimental tests. 
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T,máx [Nm] ϕ [mrad/m] T,c [Nm] ϕ [mrad/m] T,máx [Nm] ϕ [mrad/m] T,máx [%] T,c [%]

PC 19.032 2,80 17.790 1,56 18.400 1,56 3,4 3,3

SFRC25 23.000 5,57 21.770 8,39 20.300 8,39 13,3 7,2

SFRC50 20.717 7,40 18.490 2,06 19.500 2,06 6,2 5,2
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