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Abstract. This paper presents a study of stability analysis for the generalization of the fractional diffusion equa-
tion FDE with constant coefficient, when the dimensional correction parameter τ is inserted in the model. The
numerical approach chosen is an explicit finite difference scheme inspired by the classical forward Euler method.
The fractional temporal order derivative adopted in the equation is the Riemann-Liouville one, which is approxi-
mated by the Grünwald-Letnikov operator. The stability analysis is conducted with the application of the Fourier
method, allowing to show that the proposed explicit scheme is conditionally stable. A numerical experiment is
also presented with displayed results so as to back up the theoretical conclusions and to point the influence of the
dimensional correction parameter.

Keywords: Stability analysis, Fractional diffusion equation, Dimensional correction, Finite differences approxi-
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1 Introduction

Fractional calculus appeared in 1695, in a letter sent by Leibniz to l’Hôpital, where he questions about the
meaning of a derivative of order equal to one half. From that period onwards, the development of fractional
calculus took place gradually with contributions of great names, such as Euler, Lagrange, Fourier, Abel, among
others. In the last decades, fractional calculus has become an area that has attracted the interest of many research
groups due to its success in several applications. These applications are strongly related to systems that present an
anomalous superdiffusion or subdiffusion behavior, such as diffusion in plasmas [1], transport of fluids in porous
media [2], diffusion in fractals [3], and some others.

Diffusion is a phenomenon which generally occurs when a system is led to the equilibrium process. Brownian
motion or usual diffusion is characterized by linear dependence on the time growth of mean square displacement,

⟨x2(t)⟩ ∼ Kαt
α

with α = 1. On the other hand, the anomalous behavior, in general, is characterized by non-linear growth, that
is, for α > 1, we have a superdiffusive process and for α < 1, a subdiffusive process. The fractional diffusion
equation that simulates subdiffusive anomalous diffusion is, according to [4],

∂u(x, t)

∂t
= RLD

α
0,t

(
Kτα

∂2u(x, t)

∂x2

)
+ f(x, t), 0 < x < L, 0 < t ≤ T, (1)

where u(x, t) represents the probability density of finding a “particle” in x at time t. The RLD
α
0,t in (1) is the

fractional derivative defined through the Riemann-Liouville operator

RLD
α
a,tf(t) :=

1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1f(s)ds . (2)

Here and below, α > 0 is the fractional derivative order while m, a positive integer, satisfies m− 1 < α ≤ m.
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The initial and boundary value problem for the fractional diffusion equation is to determine the temperature
distribution, i.e., the function u(x, t) such that

∂u(x, t)

∂t
= RLD

α
0,t

(
Kτα

∂2u(x, t)

∂x2

)
+ f(x, t), 0 < x < L, 0 < t ≤ T, (3a)

u(x, 0) = ϕ(x), 0 ≤ x ≤ L, (3b)
u(0, t) = l(t), 0 ≤ t ≤ T, (3c)
u(L, t) = r(t), 0 ≤ t ≤ T, (3d)

being ϕ(x), l(t), r(t) and f(x, t) sufficiently regular functions given herein.
The constant K in (3a) is called thermal diffusivity, and this parameter depends on the thermal conductivity κ,

the density ρ and the material specific heat Cp, that is, K = κ/ρCp. In the international system (SI) its unit equals
to [K] = [m2/s]. The adequacy of the diffusion equation of integer order to the one of arbitrary order generates
an imbalance of dimensions and units, that is,

[
dα

dtα

]
= s−α. Thus, based on [5, 6] a new parameter τ is applied

together with the fractional derivative as seen in (3a), τ being a parameter whose unit is time, so that the fractional
equation (3a) preserves the dimension consistency. From now on we call Kτα the fractional diffusion coefficient.

2 An explicit numerical approximation scheme for FDE

We have chosen the finite difference method to perform some numerical tests on (3), having applied a scheme
based on forward Euler [7]. The computational mesh in the domain for (3) was defined by

xi := i∆x, i = 0, 1, 2, . . . ,M, L = M∆x ,

tn := n∆t, n = 0, 1, 2, . . . , N, T = N∆t .

Grünwald-Letnikov fractional derivative for a sufficiently regular function u(t) is equivalent to its fractional
derivative in Riemann-Liouville sense [8]. This fact makes it possible to get approximations for the Riemann-
Liouville fractional derivative if we employ Grünwald-Letnikov’s, by what we mean

RLD
α
0,tu(t)

∣∣
t=tn

≈ 1

∆tα

n∑
k=0

(−1)k
(
α

k

)
u(tn−k). (4)

Expression (4) is a linear (order 1) approximation for any α > 0. Applying forward and centered differences
to integer derivatives and (4) to (3a), we get

Un
i − Un−1

i

∆t
=

Kτα

∆tα

n∑
k=0

ω(k)

(
Un−k
i−1 − 2Un−k

i + Un−k
i+1

∆x2

)
+ fn

i , (5a)

U0
i = ϕ(xi) (i = 0, 1, . . . ,M), (5b)

Un
0 = l(tn) (n = 0, 1, . . . , N), (5c)

Un
M = r(tn) (n = 0, 1, . . . , N), (5d)

where Un
i is the approximation of u(xi, tn) by the scheme (5a), ω(k) = (−1)k

(
α
k

)
and fn

i = f(xi, tn). From
(5a), we get

Un+1
i = Un

i + r

n∑
k=0

ω(k)(Un−k
i−1 − 2Un−k

i + Un−k
i+1 ) + ∆tfn

i , (6)

with r := K ∆t
∆x2

(
τ
∆t

)α
. For 1 ≤ i ≤ M − 1, the matrix form for (6) is

Un+1 = Un +

n∑
k=0

ω(k)
(
AUn−k +Cn−k

)
+∆tfn, (7)
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where fn =
(
fn
1 , f

n
2 , . . . , f

n
N−1

)t
, Un :=

(
Un
1 , U

n
2 , . . . , U

n
N−1

)t
, Cn−k :=

(
rUn−k

0 , 0, . . . , 0, rUn−k
N

)t
and

A :=



−2r r 0 . . . 0

r −2r r
. . .

...

0
. . . . . . . . . 0

...
. . . r −2r r

0 . . . 0 r −2r


.

More details about its matrix form and computational implementation can be found in [9]. Figures 1 (a) – (c)
show the dependence of the calculated values with respect to the nodes in the first three levels. The stencil formed
by the red edges shows the values required for the calculation of node i in step n.

(a) The stencil shows in red the approximation scheme for level n = 1.

(b) The stencil shows in red the approximation scheme at level n = 2.

(c) The stencil shows in red the approximation scheme at level n = 3.

Figure 1. Stencil showing in red the calculating scheme for the explicit Euler type method in the first three levels.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Foz do Iguaçu, Brazil, November 21-25, 2022



A numerical scheme for the fractional diffusion equation

3 Stability of the forward Euler Type Method

The study of stability will be done by the Von Neumann or Fourier method. We are assuming a solution in
the form Un

i = dn e
jσi∆x, where j2 = −1 and σ = 2πm/L. Inserting this expression into (6) one gets

dn+1 = dn − 4r sen2
(
σ∆x

2

) n∑
k=0

ω(k)dn−k . (8)

Lemma 3.1. The sum
∑n

k=0(−1)−kω(k) = 2α holds.

Proof. See [10].

Teorema 3.1. The explicit Euler type methods (5) is stable for K ∆t
∆x2

(
τ
∆t

)α ≤ 1
21+α .

Proof. Let us write by Von Neumann dn+1 = ξ(σ)dn and assume for the moment that ξ := ξ(σ) is independent
of time. Then (8) implies a closed equation for the amplification factor ξ of the subdiffusion mode:

ξ = 1− 4r sin2
(
σ∆x

2

) n∑
k=0

ω(k)ξ−k . (9)

If |ξ| > 1 for some σ, the factor of the solution dn grows to infinity according to (9) and the method is
unstable. Considering the extreme value ξ = −1, we obtain from (9) the following stability bound on r:

r sin2
(
σ∆x

2

)
≤ 1/2∑n

k=0(−1)−kω(k)
. (10)

Applying Lemma 3.1 in (10), we obtain

r ≤ 1

(21+α) sin2 (σ∆x/2)
. (11)

As the maximum squared value of the sine function is bounded by one, we can give a more conservative and
also easier to apply bound estimate for the stability of the forward Euler-type method, that is,

K ∆t

∆x2

( τ

∆t

)α
≤ 1

21+α
. (12)

4 Numerical experiments

We considered a problem with absorbing boundaries, l(t) = t1+α exp(πα), r(t) = t1+α exp(π(α − 1)),
initial condition ϕ(x) = 0 and source term f(x, t) =

[
(1 + α)tα − π2Γ(α+ 2)t

]
exp(π(α − x)). The exact

solution of (3a) is then u(x, t) = t1+α exp (π(α− x)), on the domain D := {(x, t)| 0 < x < 1, 0 < t < 1}.
The values shown in Table 1 confirm the ones that theoretical numerical analysis has previewed. Furthermore,

it exhibits an influence of the order α on the stability condition. We consider K = 1 and set the parameter τ = 1.

Table 1. Error in norm L2 of forward Euler method with ∆t = 1/40000.

M α = 0, 1 ∆t0.9

∆x2 ≤ 1
21.1 α = 0, 3 ∆t0.7

∆x2 ≤ 1
21.3 α = 0, 5 ∆t0.5

∆x2 ≤ 1
21.5

10 2.3886× 10−3 0.0072 4.4266× 10−3 0.0601 NaN 0.5000

20 5.9948× 10−4 0.0289 1.1092× 10−3 0.2402 NaN 2.0000

30 2.6635× 10−4 0.0649 0.4665 NaN 0.5405 0.4061 NaN 4.5000 0.3536

40 1.4962× 10−4 0.1154 NaN 0.9609 NaN 8.0000

50 9.5564× 10−5 0.1803 NaN 1.5014 NaN 12.500
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The displayed results on table 1 confirm the stability condition (12) of the proposed method. However,
they motivate the search for another scheme in approaching the problem (5) since, even taking ∆t = 1/40000
no convergence was obtained “NaN (Not a Number)” for values of α greater than or equal to 0.5, which could
preclude more elaborate adjustments in the model. A mesh refinement in the temporal variable can lead to reach
new values for α. However, the memory effect of the fractional derivatives advises us against making this option
since the fractional derivative performance in the temporal variable generates a sum dependent on the number of
steps in this variable. The consequent increase in the code processing time as well as in the demand for required
memory may then turn its employment unfeasible.

Figures 2 show the effect caused by changes in the order α, having the parameter τ value being fixed as one.
Taking ∆x = 1/20 and ∆t = 1/20000.

Figure 2. Numerical solutions at T = 1 with τ = 1.

Figures 3(a) and (b) exhibit numerical results for different values of the dimensional correction parameter τ
and the fracional derivative order α.

(a) Order α = 0.1. (b) Order α = 0.2.

Figure 3. Numerical solutions at T = 1, taking ∆x = 1/20 and ∆t = 1/10000.

The numerical results shown in Figure 2 of the proposed example suggest that the order α of the fractional
derivative has a considerable influence on the modeling. From another perspective, for a fixed value of α, the
dimensional correction parameter τ also plays a role in adjusting the mathematical model to the problem, as seen
in Figures 3(a)–(b).

Analysis of the stability condition (12) through table 1 confirms requirements on the stride length ∆t to catch
up information related to corresponding order values for α. In fact, it is possible to assign values to the parameter
τ so that the method stability is obtained with a lower dependence on the step related to the temporal variable.
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5 Conclusions

This work proposes an explicit finite difference approximation scheme – here called progressive Euler-type
method – applied to a temporal fractional diffusion equation in the Riemann-Liouville sense, a dimensional cor-
rection parameter τ being considered. The stability condition for the numerical scheme is established by use of the
Von Neumann method.

The performed computational tests have confirmed the theoretical results as regards to the numerical method
stability. From the first look, the explicit scheme is particularly interesting due to its simplicity and easy implemen-
tation. On the other hand, the required stability condition can make it inadvisable when considering processing
time and memory requiments. Inserting the dimension correction parameter τ in the modeling generates new alter-
natives, even for the adjustments of the method stability condition. On other hand, it imposes dealing with a new
challenge, namely, the choice of the best value for τ .

Continuing this work, implicit schemes will be studied aiming at unconditionally stable methods and with
more precise approximations. It is also planned to analyze the influence of the dimensional correction parameter
with respect to different fractional derivative operators.
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