
Global buckling of thin-walled laminated composite columns

Jonas Aguiar Jr.1, Evandro Parente Jr.1, Marcelo Silva Medeiros Jr.1, Luiz A. T. Mororó2
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Abstract. The search for lighter and larger structural components makes the use of fiber-reinforced laminated
components increasingly slender. However, the increase in slenderness makes the structure more flexible, which
can cause stability problems and large displacements. As a result, buckling has a great influence on composite
material column designs, so their failure can occur with stress lower than the strength of the material. In this
way, the evaluation of the stability of these structures is of great importance because it allows for predicting the
load capacity. However, one of the main objectives of the industry is to replace experimental tests with numerical
simulations, since in tests of composite material structures, numerous and expensive tests are usually required.
Therefore, this work aims to study of global buckling of laminated composite channel-section columns. Two
approaches are employed in this context. The first approach consists of a three-dimensional beam finite element
for stability analysis of thin-walled laminated composite. Regarding the second approach, it relies on the Rayleigh-
Ritz framework assumes that the axial strain is neglected, and the column only buckles according to the minor
axis of bending, evaluating the behavior of channel-section columns, with different layups when subjected to
compressive loads. Both strategies are based on a fully coupled constitutive matrix, and the results obtained were
compared with shell finite elements.
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1 Introduction

Fiber-reinforced composite materials have gained space in automotive, aeronautics, shipbuilding, and con-
struction industries. This is because these materials present desired properties, such as high stiffness/weight and
strength/weight ratios, thermal/acoustic insulation, and low thermal expansion. However, the behavior of com-
posite structural members, especially columns, are much more complex than the behavior of their steel or alu-
minium counterparts. In-plane compressive loads, when high enough, can cause excessive deflections that may
lead to failure. The load at which excessive out-of-plane deflections occur is called the buckling load [1]. The
buckling strength of laminated structures depends on the material properties, composite layup, cross-section ge-
ometry, length, and boundary conditions. In terms of global buckling, this includes buckling modes where the
half-wavelength has the same order of magnitude as the length of the compressed element and the cross-section
remains undistorted.

The interaction between local and global buckling has already been evaluated experimentally for some time.
Barbero and Tomblin [2] adapted an existing interaction equation aiming to consider the failure modes observed
in the columns made of fiber-reinforced composite materials. D’Aguiar and Parente Jr. [3] presented a study on
the behavior, performance, and failure of thin-walled composite channel section columns, showing the influence
of the lamination scheme and the thickness on the local buckling of these columns. In addition, it was verified that
the interaction between global and local buckling modes has a great influence on the post-critical behavior of the
column and, consequently, on its load capacity.

The large elongation allowed by the fibers and resin allows the fiber-reinforced materials to remain linearly
elastic for large deformations and deflections [4]. Therefore, the design specifications in structures of steel to avoid
buckling problems can not be the same in material structures composites, since in steel structures buckling usually
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occurs in the plastic range with the influence of geometric and mechanical imperfections [5]. Therefore, this work
seeks to present a Rayleigh-Ritz and a Finite Element approach to the evaluation of the global buckling load of
laminated columns with channel cross-sections thin-walled composite columns with various layups and lengths.
With this, it is possible to study the influence of the orientation of the plies on the critical load in the column with
different lengths.

2 Stability of thin-walled laminated colums

Perfect or ideal columns are structural elements that are perfectly straight and subjected predominantly to
axial compressive stresses. To determine the load by the which the structure loses the ability to resist increased
loading in its configuration original and begins to show large deflections (buckling). It is important to note that
composite columns have thin walls, buckling being an important design consideration [6].

In short columns, it is expected that local buckling occurs first, causing large deformations, following global
buckling or material degradation [7]. However, for long columns of composite material it is observed that generally
the global buckling (Euler) occurs before other instability modes. Therefore, in the next sections, two different
methods used to obtain critical loads are presented.

2.1 Cross-sectional stiffness

The performance of the two approaches presented in this work to determine buckling loads depends on
careful evaluation of the constitutive behavior of the laminated column. Defining such constitutive laws is not a
straightforward task due to the geometry and layup of each segment of the cross-section. Several approaches are
presented in the literature to obtain such a relation [8–11]. However, due to its implementation simplicity and the
possibility to be applied for open and closed cross-sections with an arbitrary layup, and because of the good results
that have been reported [12, 13], the theory proposed by Kollar and Pluzsik [14] is adopted in this work.

Kollar and Pluzsik [14] proposed a general theory to analyze thin-walled laminated beams in which analytical
expressions for flexibility matrix (and stiffness matrix) for open and closed sections are presented. In this theory,
each segment of the cross-section consists of flat segments where each one may have different layers with arbitrary
layups, and effects due to transverse shear deformation and warping are neglected; as a main result, the generalized
strain vector (ε) can be related to the generalized stress vector (σ) through the symmetric flexibility matrix, F:

εx

κy

κz

β


=


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44





Nx

My

Mz

T


=⇒ ε = Fσ, (1)

where εx is the normal strain in x direction, κy and κz are respectively the beam curvatures about y and z axes, β
is the rate of change of twist angle (θx) along x direction, Nx is the axial force, My and Mz are respectively the
bending moments about y and z axes, and T is the torque (see Fig. 1). Observe that the stiffness matrix, C, can be
obtained by inverting F, i.e., C = F−1. Also, note a fully 4x4 coupled constitutive matrix can be obtained through
this approach depends on the geometry and layup of the cross-section.

2.2 Finite Element Method

Regarding the first approach adopted in this work, the two-node three-dimensional beam finite element for
geometrically nonlinear analysis of thin-walled laminated composite beams presented in [12] is used. This element
uses the Total Lagrangian formulation to deal with large displacements and moderate rotations, and in which
nonlinearity is only considered in the axial strain. Furthermore, the element formulation is based on Bernoulli-
Euler-Navier bending hypothesis and Saint Venat’s torsion hypothesis, and possess six degrees of freedom per
node (three translations and three rotations).

This element can capture post-buckling behavior, but a linearized buckling analysis that consists in solving
the generalized eigenproblem is employed for determining the buckling load of laminated composite columns [15]:

(K+ λKg)ϕ = 0, (2)

where λ are the eigenvalues associated with the buckling load factors, and ϕ are the eigenvectors (or buckling
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Figure 1. Channel-section beam: forces and global coordinate system whose origin coincides with the mechanical
centroid of the cross-section. Colored region indicates that all forces are acting in the same cross-sectional plane.

modes). The two global matrices, K (global linear stiffness matrix) and Kg (global geometric stiffness matrix), are
assembled through their corresponding element stiffness matrices which are, respectively, obtained by integration
over the element length, L:

k =

∫
L

BTCB dx (3)

and
kg =

∫
L

NxA
T dx, (4)

with C being the constitutive matrix defined as C = F−1 (see Eq. (1)). The matrix A and the displacement-strain
matrix B are obtained by evaluating the derivatives of standard finite element shape functions, which are in turn
assembled through Lagrangian (linear) and Hermite (cubic) polynomials according to the nodal degrees of freedom
of element. More details on how to assemble matrices A and B can be found in [12].

2.3 Rayleigh-Ritz

The second approach used in this work for determining the buckling load of laminated composite columns
relies on the Rayleigh-Ritz (RR) method. For this, it is assumed that the axial strain is neglected, and the column
only buckles according to the minor axis of bending (i.e., axis z, see Fig. 2). As a result, Eq. (1) can be rewritten
as: 

εx = 0

κy = 0

κz

β


=


F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44





Nx

My

Mz

T


. (5)

Equation (5) can be solved for the axial force Nx and the bending moment My in terms of the remaining
force components by extracting the first and second linear equations from the matrix:Nx

My

 = −Q−1R

Mz

T

 , (6)

with

R =

F13 F14

F23 F24

 and Q =

F11 F12

F21 F22

 . (7)

Substituting Eq. (6) into the third and fourth linear equation in Eq. (5), and recalling that F is symmetric (and
consequently R) leads to the following condensed/reduced relation:
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κz

β

 =

F33 F34

F43 F44

−RTQ−1R

Mz

T

 ⇒ εr = Fr σr, (8)

where Fr is the reduced flexibility matrix, whose inversion yields the reduced stiffness matrix (Cr = F−1
r ):Mz

T

 =

C11 C12

C21 C22

κz

β

 ⇒ σr = Cr εr (9)

In this equation, C11 corresponds to the bending stiffness (EIz), C22 corresponds to the torsional stiffness (GJ),
and C12 = C21 corresponds to the bending-torsion coupling stiffness (S).
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Figure 2. Column geometry and boundary conditions.

In this study, only columns with both ends pinned are considered, as shown in Fig. 2. In line with the
Rayleigh-Ritz framework, a generalized buckling formula can be derived based on the energy approach. Therefore,
the total potential energy function of the system can be expressed as:

Π =

∫
L

1

2
εT
rσr dx− Pu =

1

2

∫
L

(
EIzκ

2
z + 2Sκzβ +GJβ2

)
dx− P

2

∫
L

(
dv
dx

)2

dx, (10)

where the first integral corresponds to the strain energy which integrand is obtained through Eqs. (8) and (9), and
the second integral refers to the work done by the applied force P . Once again, observe the fact that buckling may
only take place according to the minor axis of bending; as such, only the lateral displacement v in the plane yz is
considered.

For the boundary conditions shown in Fig. 2, the following displacement fields are assumed based on the
isotropic Euler first buckling mode:

v(x) = a sin
(πx
L

)
and θx(x) = b

[
1− cos

(πx
2L

)]
, (11)

where u(x) and v(x) are, respectively, the axial and lateral displacements, and a and b are the degrees of freedom.
Observe that the twist angle θx is fixed at one end and free at the other end. Therefore, the terms κz and β can
respectively be expressed as:

κz =
d2v
dx2

and β =
dθx
dx

. (12)

Solving the expression obtained by minimizing Eq. (10) concerning to a and b for the load P leads to the
following expression for buckling load:

Pcr =
9π2EIzGJ − 64S

2

9GJL2
. (13)

It is interesting to emphasize the fact that the corresponding Euler formula (Pcr = π2EIz / L2) for isotropic
columns can be obtained from the expression above by neglecting the coupling term S.
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3 Numerical examples

Finite element models of thin-walled columns of channel sections were developed using the ABAQUS [16]
to assess the accuracy of the approaches proposed in this work. These models are discretized using quadratic shell
elements based on the Reissner-Mindlin Theory with eight nodes and reduced integration (S8R). The columns con-
sidered in this work were previously studied by Debski et al. [17] with a focus on local buckling. The web measures
80mm and is divided into 8 parts, while the flanges measure 40mm and are divided into 4 parts. Columns with
lengths from 1m to 3.5m are considered, discretized using square elements of 0.1m size. Thus, as the length
increases, the total number of elements also increases.

Boundary conditions were applied to a point at the centroid of the cross-section, where this point had rigid
body constraints with only translational degrees of freedom associated with the rigid body, called PIN in the
ABAQUS software [16]. The boundary conditions at the bottom of the constrained column were U1, U2, U3 and
UR3, while the boundary conditions at the top of the constrained column were U1, U2 and UR3. These boundary
conditions are consistent with a simply supported column for both local and global buckling modes. A unit load
was applied to the top point. A typical model is shown in Fig. 3.

Figure 3. Column model adopts in ABAQUS and its discretization

Taking as a reference the laminated columns of the thin-walled channel section from the experimental tests
carried out by Debski et al. [17], Hexcel’s HexPly M12 carbon-epoxy material was adopted for the finite element
models. The material properties are given by E1 = 130 710MPa, E2 = 6360MPa, G12 = 4180MPa and
ν12 = 0.32. Four different composite layups with 8 plies in each were considered, each ply with 0.131 mm and
total thickness h = 1.048 mm, they are: L1 [0/ − 45/45/90]s, L2 [0/90/0/90]s, L3 [45/ − 45/0/90]s and L4
[45/− 45/90/0]s.

The buckling loads of the columns with different lengths and the four layups were evaluated using the
Rayleigh-Ritz method, beam finite element models (with 15 elements) and shell finite element models. The ob-
tained results are shown in Fig. 4. In addition, the experimental local buckling obtained by Debski et al. [17] for
layups L1, L2, and L3 are also shown in this figure. The results of the shell model for short columns are in very
good agreement with the available experimental results, showing the correct consideration of the geometry, layup,
and boundary conditions.

It is important to note that the critical loads calculated by the Rayleigh-Ritz and beam element approaches
present an almost perfect agreement for the four different layups considered in this work. Furthermore, these
results are also in almost perfect agreement with the shell FE model for long columns, where the global mode
is dominant. This occurs because the global mode adopted by the Rayleigh-Ritz method is very close to the one
obtained by shell model, as depicted in Fig. 5.

The results also show that there is a strong influence of the composite layup on the column strength, with
layup L2 presenting the highest global buckling loads, but the smaller local buckling load. On the other hand, the
other three layups present almost identical global buckling loads, but different local buckling loads. The transition
length when the critical mode changes from local to global is also strongly dependent on the composite layup. On
the other hand, the buckling modes for the length of 3.0m presented in Fig. 5 reveal the similarity between global
buckling modes for different layups.
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(c) Layup L3
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Figure 4. Critical load versus column length.

(a) Layup L1 (b) Layup L2 (c) Layup L3 (d) Layup L4

Figure 5. Buckling modes (L = 3m).

4 Conclusions

In this work, Rayleigh-Ritz and Finite Element approaches were presented for the evaluation of the global
buckling loads of laminated columns with thin-walled channel cross-sections. The results show the strong influence
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of composite layup and column length over the buckling load of laminated columns. On the other hand, the global
buckling mode was practically the same for all layups considered in this work.

The Rayleigh-Ritz approach contributes to a better understanding of the instability mechanisms and the be-
havior of columns of fiber-reinforced composites. Furthermore, this approach leads to excellent results despite its
simplicity. The accuracy of this approach is related to the approximate buckling modes adopted in this work.

The beam element model is an alternative that considers all couplings and helps to confirm the results obtained
by the Rayleigh-Ritz method. Finally, the shell element model, adopted to validate the simplified approaches
presented in this work, was able to capture the transition from local to global buckling leading to accurate results
for both cases. Therefore, these finite element models can be used for more complex stability studies including the
post-buckling behavior and the assessment of imperfection sensitivity.
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[12] L. A. T. Mororó, A. M. C. Melo, and E. Parent Junior. Geometrically nonlinear analysis of thin-walled
laminated composite beams. Lat. Am. j. solids struct., vol. 12, n. 11, pp. 2094–2117, 2015.
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