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Abstract. This study presents a computational analysis of the dynamic behavior of a simply supported beam 

subjected to a moving mass and corresponding load that travels along its entire length with different speeds. The 

first analysis aims to understand the behavior of the structure and to determine transversal response of the structure. 

Here, a discretized simply supported beam model was developed, based on the Finite Element Method, using 

numerical integration by Newmark’s Method for the solution of ordinary differential equations and obtaining the 

displacements of the structure in the time domain, to evaluate its behavior due to moving masses and loads. The 

analysis is made in different velocities and damping rates aiming to find the maximum transverse response, and 

comparing with the static response to find the maximum amplification coefficients. This article aims to evaluate 

the frequencies and vibration modes associated with the maximum displacements found and its relation with the 

different velocities applied. 
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1  Introduction 

The structures are submitted to loads that vary in function of time, causing dynamic effects. The development 

of trustful models that evaluate the responses of structures is essential to warrantee its security. 

This paper presents a case study, in which a simply supported beam is subjected to a moving mass in 

longitudinal motion, and aims to find the transverse responses of the structure for different velocities using 

optimization methods to find the velocity that causes the maximum displacement of the structure, it aims to relate 

the frequencies associated with its maximum displacements. 

2  Modelling 

The studied system is shown in Figure 1. It consists of a simply supported beam, with length L, modulus of 

elasticity E, cross section area A, moment of inertia about the y-axis I and density ρ. Along the beam, the moving 

mass M travels with constant speed v(t). 
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Figure 1. Simply-supported beam subjected to a moving mass system 

The model is then discretized and analyzed using the finite element method where the real structure is 

represented as a model consisted of several elements, as shown in Figure 2, with several degrees of freedom. Each 

element has mass, stiffness and corresponding damping, leading to the generation of matrices of mass, stiffness 

and damping of each element. 

 

Figure 2. Discretized model 

The local matrices are then converted to global matrices, and the equation of the system's motion is considered 

in the matrixial form as 

 [𝑴]{𝒖̈} + [𝑪]{𝒖̇} + [𝑲]{𝒖} = 𝑝(𝑡)  (1) 

where [𝑀] is the mass matrix, [𝐶] the damping matrix and [𝐾] the stiffness matrix of the system. Mazzilli et 

al. [1] report that it is a sufficient condition for the damping to be of the proportional type such that the damping 

matrix [C] is a linear combination of the mass and stiffness matrices, expressed by 

 [𝐶] = ∑ 𝑎𝑏[𝑀]([𝑀]−1[𝐾])𝑏
𝑏   (2) 

where the particular case of the Rayleigh damping can be considered 

 [𝐶] = 𝑎0[𝑀] + 𝑎1[𝐾]  (3) 

where the factors 𝑎0 and 𝑎1 are obtained imposing damping rates 𝜉 arbitrarily adopted for two chosen modes, 

finding the solution for the system 
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To solve the problem of moving loads, the moving mass 𝑀 is considered changing position between the 

nodes, changing the mass matrix [𝑀] at each time step, depending on the constant speed 𝑣(𝑡), solving the nonlinear 

problem in a linearized form. 

In order to obtain system responses, it is necessary to integrate the equations of motion, so the Newmark 

method is used for direct integration, Toledo [2] reports that displacements and velocities are developed in Taylor 

series, with the rest being calculated approximately according to free parameters that are fixed later. Brasil and 

Silva [3] report that, given the vectors of displacements, velocities and accelerations, their values are determined 
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in an instant 𝑡 + 𝛥𝑡. 

 𝑢𝑡+𝛥𝑡 = 𝑢𝑡 + 𝛥𝑢  (5) 

 𝑢̇𝑡+𝛥𝑡 = 𝑏0𝛥𝑢 − 𝑏2𝑢̇𝑡 − 𝑏3𝑢̈𝑡  (6) 

 𝑢̈𝑡+𝛥𝑡 = 𝑏1𝛥𝑢 − 𝑏4𝑢̇𝑡 − 𝑏5𝑢̈𝑡  (7) 

 

The coefficients 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 are chosen in order to approximate the variation of the vectors, obtaining 

a system of algebraic equations that allows to find the increments of displacements in the step, 

 𝐾𝛥𝑢 = 𝑝̂𝑡+𝛥𝑡  (8) 

with equivalent stiffness 

 𝐾 = 𝑏1𝑀 + 𝑏0𝐶 + 𝐾  (9) 

and equivalent step load 

 𝑝̂𝑡+𝛥𝑡 = 𝑝𝑡+𝛥𝑡 + 𝑀(𝑏2𝑢̇𝑡 + 𝑏3𝑢̈𝑡) + 𝐶(𝑏4𝑢̇𝑡 + 𝑏5𝑢̈𝑡) − 𝐾𝑢𝑡  (10) 

from which the displacement velocities and accelerations of the next step are determined. 

The concept of optimization is then applied to find the maximum displacements in the midspan considering 

different constant speeds of displacement of the mass over the bar element to obtain the solution of the problem. 

Brasil and Silva [4] present the concept of the golden ratio optimization, from which, in an iterative way, the 

solution of the problem can be found, this method uses the golden ratio, defined by Euclid as 

 𝜑 =
1+√5

2
  (11) 

to find the minimum of a function, an interval is defined so that the minimum value is sought, where two 

points chosen considering the golden ratio are compared. The functions are applied to these points, and the 

minimum between them is verified, after that, one of the points becomes the new limit of the interval, excluding 

the left or right domain, and the analysis is repeated, the interval is then reduced by 61.8% at each iteration and is 

repeated until the minimum of the function is found. 

In an analytical study, for a cantilever beam with the free left end, the exact cyclic frequency can be expressed 

as 

 𝜔𝑖 = 𝑖2𝜋2√
𝐸𝐼

𝑙4𝜇
  (12) 

Rao [5] points the mode shape equation as, 

 𝛷𝑖(𝑥) =  𝑠𝑖𝑛
𝑖𝜋𝑥

𝐿
  (13) 

Applying them, it is possible to find the vibration modes of the system as presented in Figure 3. 

 

Figure 3. Shapes of the first four modes of vibration for simply supported beams 

Fryba [6] points as a way to find the critical speeds the equation  

 𝑣𝑐𝑟(𝑖) =  
𝑖𝜋
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From which we relate with the speed applied to evaluate the excited modes. 

3  Discussion and Results 

For the study, two models were analyzed using Mathworks Matlab® to find the solutions, consisting of a 

simply supported concrete beam, with two different lengths 𝐿 = 100.00𝑚 and 𝐿 = 50.00𝑚, modulus of elasticity 

𝐸 = 3.0𝑥1010, cross section area 𝐴 = 45.00𝑚², moment of inertia about y-axis 𝐼 = 45.00 𝑚4 and density 𝜌 =

2500 𝑘𝑔/𝑚³. The moving mass  𝑀 = 22000 𝑘𝑔 moves at a constant speed. We analyzed the structure's response 

to different speeds between 𝑣(𝑡) = 1,00 𝑚/𝑠 and 𝑣(𝑡) = 200,00 𝑚/𝑠.  

The model is then discretized to perform computational analysis using the finite element method in a model 

with 100 elements and 101 nodes, each node with two degrees of freedom, relative to vertical displacement and 

rotation, and axial efforts can be disregarded. 

Stiffness matrices and mass matrices are then generated for each moving mass position. 

Using the Newmark Method, the responses of the motion equation for each position of the mobile load are 

then calculated, as a function of the displacement speed, for different constant speeds between 1,00 m/s and 100,00 

m/s, applying the golden ratio method of optimization to find the velocity that causes the maximum deflections 

for different ratios of damping between 0.005 and 0.1, and its respective maximum transversal deflection, the 

results are shown in Tables 1 and 2. 

Table 1. Speeds of maximum transversal deflections for span of 50 meters 

Damping rate ξ Critical speed 

(m/s) 

Maximum transversal 

deflections (mm) 

0.001 86.6873 0.6174 

0.005 39.7326 0.4249 

0.01 1.0001 0.4243 

0.02 1.0001 0.4241 

0.05 1.0001 0.4225 

0.10 1.0001 0.4173 

Table 2. Speeds and maximum transversal deflections for span of 100 meters 

Damping rate ξ Critical speed 

(m/s) 

Maximum transversal 

deflections (mm) 

0.001 46.5226 5.8026 

0.005 45.6288 5.5399 

0.01 44.6379 5.2482 

0.02 42.5543 4.7629 

0.05 34.7484 3.8258 

0.10 1.0001 3.3943 

 

The dynamic amplification coefficients obtained comparing the static deflection and the dynamic deflection 

are shown in Figure 3. 
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a)  

b)  

Figure 3. Relation between the displacement speed of the mobile mass and the dynamic amplification coefficient 

for simply supported structure for different damping rates for a) 50 meters span and b) 100 meters span 

The critical speeds can be seen in Table 3. 

Table 3. Critical Speeds for spans of 50 meters and 100 meters 

i 50 m span (m/s) 100 m span (m/s) 

1  217.66   108.83  

2  435.31   217.66  

3  652.97   326.48  

4  870.62   435.31  

 

 

The relation between the speeds of maximum deflection at midspan and the critical speeds for the first mode 

can be seen in the Table 4. 
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Table 4. relation between the speeds of maximum deflection at midspan and the critical speeds 

Damping rate ξ Vmax/Vcr in 50 m 

span (m/s) 

Vmax/Vcr in 100 m 

span (m/s) 

0.001  0.43   0.40  

0.005  0.42   0.18  

0.01  0.41  -  

0.02  0.39  -  

0.05 0.32 - 

0.10 - - 

4  Conclusions 

It is possible to observe that due to the movement of the mass, the structure responds with different 

amplification, depending on the adopted parameters. Considering the subcritical damping, for small speeds the 

deflection is practically equal to the static deflection, as the speed grows, the midspan deflection approaches its 

higher value, and then, applying higher speeds the deflection tends to lower values, approximating the values to 

zero. 

The coefficients of dynamic amplification reach values higher than 1.7 for lower damping rates. It is possible 

to see that in speeds around 40% of the critical speed for the first modes occurs the maximum displacements of 

the beams for both studied models. 
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