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Abstract. The propagation and emergence of cracks are widely explored in fracture mechanics. A study that
has increased with the advancement of computer technology is the phase-field for crack modeling. This model
approaches the crack as continuous and diffuse, placing a damage variable in the problem and a variable with the
crack band size. There are different ways to control crack irreversibility, such as the bound-constrained solver
and the historical solver. The bound-constrained solver allows you to choose any crack geometry function and
energy degradation while the historical solver needs to be a specific crack geometry function. In this article, the
importance of linear search for bound-constrained solver results will be discussed through numerical simulations,
showing that the line search is necessary to avoid numerical instabilities as well as a correct load peak. Numerical
simulations were processed in INSANE software (INteractive Structural ANalysis Environment). This work uses a
bound-constrained solver from the PETSc library, connected to INSANE through a JNI.
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1 Introduction

With the advent of computers, numerical simulations of structures could be performed, and with that, safer
projects were made. Fracture mechanics benefited from this, being able to simulate the opening and propagation
of cracks. There are two ways to model cracks: discretely and continuously. In continuous modeling there are
several forms already established in the literature, and the phase-field is one of them.

The phase field model generalizes the Griffith theory, aiming to solve the displacement field and the fracture
region by energy minimization and no assumptions for the evolution of the cracks are necessary (Goswami et al.
[1]). The phase-field (ϕ) is a scalar variable that goes from 1 for the fully cracked state of the material to 0 for
the undamaged state. In addition to the phase-field variable, another parameter is the length scale parameter (l0),
that controls the width of the region where the discrete crack is smoothed. Small values of this length tends to
reproduce the Griffith’s theory.

The phase-field has already been widely discussed by several authors. A complete review of this strategy,
which addresses several references on the subject, can be found in Wu et al. [2]. In phase-field models, when
dealing with the irreversibility of the crack, care must be taken, since when using the historical solver (Miehe et al.
[3]), it limits the selection of the crack geometric function and the degradation energy function. One way to get
around this problem is to use a bound-constrained solver

The computational implementations were done in the program INSANE1 (INteractive Structural ANalysis
Environment). This is an open-source program based on the Object-Oriented Programming paradigm and devel-
oped at the Department of Structural Engineering of the Federal University of Minas Gerais (Penna [6], Fuina
[7]). It was used in this work the library PETSc (Portable, Extensible Toolkit for Scientific Computation) for the
bound-constrained solver. PETSc is a suite of data structures and routines for the scalable (parallel) solution of
scientific applications modeled by partial differential equations. In order to use PETSc, a binding was made (JNI -
Java Native Interface) to INSANE, because INSANE is written in Java and PETSc written in C. In INSANE there
are two such solvers implemented, one in the code itself (Bayao et al. [4]) and the other through the library PETSc
(Fortes et al. [5]).

1The development code is available at the Git repository URL http://git.insane.dees.ufmg.br/insane/insane.git.
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The objective of this work is to use the bound-constrained solver by PETSc to analyze the importance of
using this solver with a linear search.

2 Phase-field modelling for fracture

In the phase-field model there is the a domain Ω, where a broken part B ⊂ Ω is considered. B is the region
where the fracture is located and smoothed by the phase-field model. The boundary of the solid and the broken
surface are, respectively, ∂Ω and ∂B.

Figure 1. A solid body with a crack.

Within the phase-field approach, the total energy functional Et is given by:

Et =

∫
Ω

ψ(ε(ū), ϕ) dV +

∫
B
Gcγ(ϕ,∇ϕ) dV + −

∫
Ω

b̄ · ū dV −
∫
∂Ω

t̄ · ū dA (1)

where ū is the displacements field, ϕ is the phase-field, ψ is the strain energy density (section 2.2), Gc is a material
property that represents the critical energy release rate, γ is the crack surface density function (section 2.1), b̄ are
the body forces and t̄ are the surface forces.

2.1 Crack Surface Density Function

The crack surface density function γ in eq. (1) describes how the sharp crack topology is smoothed over the
domain. Wu [8] proposed a general equation for the surface density function of the crack:

γ(ϕ,∇ϕ) = 1

C0

[
1

l0
α(ϕ) + l0 | ∇ϕ |2

]
(2)

where the crack geometry function α(ϕ) and the parameter C0 = 4
∫ 1

0
α1/2(ϕ)dϕ have been introduced. The

function α(ϕ) determines how the phase-field will be distributed and it has to satisfy the following properties:
α(0) = 0 and α(1) = 1. Was proposed by Wu [8] the following quadratic equation for α:

α(ϕ) = ξϕ+ (1− ξ)ϕ2 ∈ [0, 1] ∀ϕ ∈ [0, 1] (3)

where ξ ∈ [0, 2], otherwise α(ϕ) ∈ [0, 1] cannot be guaranted Wu et al. [2].

2.2 Energy Degradation Function

The energy degradation function g(ϕ), makes the connection between the crack phase-field and the mechan-
ical fields. The strain energy function, in eq. (1), describes a smooth transition between the fully broken and fully
unbroken states of the material. The initial strain energy density function ψ0(ε) and the degradation function
g(ϕ) : [0, 1] −→ [1, 0] are used to describe the strain energy function.

An anisotropic formulation based on the following additive decomposition of the elastic strain energy is
commonly adopted in the literature to prevent crack formation in compresion regions:

ψ0(ε) = ψ+
0 (ε) + ψ−

0 (ε) (4)

where ψ+
0 (ε) is the part that comes from tensile strains (active strain energy density) and ψ−

0 (ε) is the part due to
compressions (inactive strain energy density). The degradation is then assumed to affect just the tensile part:

ψ(ε) = g(ϕ)ψ+
0 (ε) + ψ−

0 (ε) (5)
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There are many energy degradation functions, already proposed in the literature. In this work the focus is the
g(ϕ) function proposed by Wu [8]:

g(ϕ) =
(1− ϕ)p

(1− ϕ)p +Q(ϕ)
(6)

where p > 0, and the continuous function Q(ϕ) > 0 is given by:

Q(ϕ) = c1ϕ+ c1c2ϕ
2 + c1c2c3ϕ

3 + · · · (7)

where c1, c2 and c3 are given by:

c1 =
2E0Gc

f2t

ξ

C0l0
=

2ξ

C0

lch
l0

(8)

c2 =
1

ξ
[(−4πξ2

C0

Gc

f2t
k0)− (p+ 1)] (9)

c3 =

 0 p > 2

1
c2
[ 1ξ (

C0wcft
2πGc

)2 − (1 + c2)] p = 2
(10)

where E0 is the Young´s modulus, ft is the failure strength and lch = E0Gc/f
2
t is the characteristic length, for

Griffith´s or Irwin´s theories. wc is the ultimate apparent displacement jump (ultimate crack opening) and k0 is
the initial slope for the softening curves, which represent the relationship between the stress (σ) and the apparent
displacement jump (w) across the localisation band. More details on the parameters wc and k0 can be found in Wu
[8]. The values of wc and k0 can also be stipulated for certain softening laws already established in the literature
(Wu [8]). In this work, the Cornelissen’s softening law (Cornelissen et al. [9]) will be considered.

2.3 Equations of Phase-Field Models in Weak Form

The governing equations of a phase-field model in weak form are:
∫
Ω
σ : δε dV = δPext∫

B

[
g′(ϕ)Ȳ δϕ+Gc

1

l0
α′(ϕ)δϕ+ 2l0∇ϕ · ∇δϕ

]
dV ≥ 0

(11)

where Ȳ =
∂ψ

∂g
is the effective crack driving force. More details on the development of the equation can be found

in Wu et al. [2] and Leão [10].

2.4 Hybrid Constitutive Model

Hybrid models were developed as an alternative to maintain the asymmetric behavior with respect to tension
and compression, but at the same time avoiding excessive non-linearity caused by the definition of Y⃗ (effective
crack driving force) by the part deformation energy, which makes solving the displacements little efficient in
models that make separation of variables (Wu et al. [2]). In this work, the hybrid model based on the work of Wu
[11] will be used, where ψ0 = σ2

1/(2E0), where σ1 denotes the first major principle value of the effective stress σ.

3 Bound-Constrained Solver for Phase-Field

3.1 Bound-Constrained Solver

To deal with the boundedness and irreversibility conditions, it’s convenient to regard the governing equation
from residual phase-field form as an optimization problem bounded by the following condition:

0 ≤ aI,n ≤ aI,n+1 ≤ 1 (12)

where ā is nodal phase-field, n is the current step, n+1 is the next step and I is the index for each node. The residual
phase-field is obtained through the development of discretization by finite element method of phase-field in weak
form (section 2.3), more details in Wu et al. [2]. The nodal phase-field is described by the relation ϕ(x̄) = [N]

ϕ
ā,

where [N]
ϕ is the shape function for phase-field variable.
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According to Farrell and Maurini [12], under the above condition the residual phase-field equation constitutes
a mixed complementarity problem (MCP), which is a problem formulation in mathematical programming, that can
be written as: 

aI,n < aI,n+1 < 1 rϕI = 0 Inactive set(I )

aI,n = aI,n+1 rϕI ≤ 0 Active set(A )

aI,n+1 = 1 rϕI ≥ 0 Active set(A )

(13)

where rϕI is the residual phase-field. Equation 13 says that the solution of residual phase-field needs to be for
each node, precisely, one of the conditions shown. We use a reduced-space active set Newton method, included in
the the open-source toolkit PETSc (Balay et al. [13]), to solve this problem, just as Wu et al. [2] and Farrell and
Maurini [12] did. In order to use PETSc, a binding was made to INSANE, because INSANE is written in Java and
PETSc written in C. To do this, a Java Native Interface (JNI) was made based on Azevedo [14].

In the algorithm (Fig. 2) the active set is the subdomain with the restrictions applied and no equation is solved,
while in the inactive set the equations are solved, in such way that the restrictions are satisfied. So the idea of the
algorithm is to reduce the number of equations to be solved at each step, as it updates the inactive set. The indices
i, j and k in Fig. 2 refer, respectively, to the step, global iteration and local phase-field iteration. In this article we
use a staggered solver, which solves the phase-field and displacement separately.

while phase-field doesn’t converge do
(INSANE): Phase-field stiffness matrix: [K]

ϕϕ
i,j,k−1

(INSANE): Phase-field residue: R⃗ϕ
i,j,k−1

(JNI): INSANE → PETSc
(PETSc): Compute Active and Inactive sets
(PETSc): Incremental phase-field: ([K]

ϕϕ
i,j,k−1)δa⃗i,j,k = R⃗ϕ

i,j,k−1

(JNI): PETSc → INSANE
(INSANE): Backtracking Armijo Line-search
(INSANE): Update phase-field: a⃗i,j,k = a⃗i,j,k−1 + δa⃗i,j,k
(INSANE): Verify local convergence for phase-field

end

Figure 2. Pseudocode for phase-field convergence with bound-constrained solver by PETSc.

3.2 Tolerances

As the solution to the problem is separated, a convergence is made for the phase-field and another for the
displacements. In this work, two tolerances will be mentioned, a local and a global tolerance. Local tolerance
refers to the separate convergence of displacement and phase-field variables, while the global tolerance checks if the
displacement convergence, after the phase-field convergence, was not unbalanced, it would be a local displacement
tolerance after the phase-field convergence. The local convergence is reached when the error calculated by

Error =

∥∥∥δX⃗∥∥∥∥∥∥X⃗∥∥∥ (14)

is smaller then a defined tolerance, where δX̄ and X̄ can be the residual load and the forces vector, or the incre-
mental displacements and the displacements vector, depending on the convergence type Leão et al. [15].

In this work, the line search for the bound-constrained solver will be investigated, therefore, another conver-
gence for the local phase-field iteration will be investigated, which is due to a restrict operator given by eq. (15).

FΘ(ān+1)I =


rϕI , for aI,n < aI,n+1 < 1

min(rϕI , 0), for aI,n+1 = 1

max(rϕI , 0), for aI,n = aI,n

(15)

Where the convergence of the iteration is given by ||F̄Θ(ā
k
n + 1)|| > TOL. More details on this convergence, can

be found in Bayão [16] and Bayao et al. [4].
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4 Numerical Examples

The purpose of this section is to show the importance of the line search and some findings about its use
with convergences. In this entire section the same data will be used for two different examples. The following
data were used: E0 = 25850 N/mm2, Poisson´s ratio ν = 0.18, ft = 2.7 MPa, Gc = 0.065N/mm, l0 = 8.5
mm, Cornelissen’s softening law for normal concrete (η1 = 3 and η2 = 6.93) and hybrid constitutive model stated
in section 2.4. Data were taken from the numerical L-Shaped Panel model from Penna [17]. In all examples
displacement control was used, the local tolerance used was of 1 · 10−4 and the global tolerance was of 1 · 10−4.
All cases are in a plane stress.

Furthermore, in this section there will be the same model processed with different conditions of the solvers,
where each processing is described below:

• Processing 1 - Bound-constrained solver in INSANE (Bayao et al. [4]) with line search and ||F̄Θ(ā
k
n + 1)||

convergence
• Processing 2 - Bound-constrained solver by PETSc (Fortes et al. [5]) with line search and ||F̄Θ(ā

k
n + 1)||

convergence
• Processing 3 - Bound-constrained solver by PETSc without line search and

∥∥δX̄∥∥ / ∥∥X̄∥∥ convergence
• Processing 4 - Bound-constrained solver by PETSc with line search and

∥∥δX̄∥∥ / ∥∥X̄∥∥ convergence
• Processing 5 - Bound-constrained solver by PETSc with line search and ||F̄Θ(ā

k
n+1)|| convergence and and

half the step size

4.1 Uniaxial Traction Test

The first result will be based on a numerical uniaxial traction model of a quadrilateral element with side of 1
mm with only one element Q4. Increments of 2 · 10−5 were considered in all cases. The results for the load versus
horizontal displacement for each processing are shown in Fig. 3.

0 0.5 1 1.5 2

·10−3

0

0.5

1

1.5

2

2.5

3

3.5

Displacement (mm)

Lo
ad

(N
)

Processing 1 and 2
Processing 3
Processing 4
Fixed-Smeared Crack

Figure 3. Curves of load versus displacement for Uniaxial Traction Test

Analyzing the Fig. 3, it is noted that when the line search is not used, the bound-constrained solver presents
a peak load far from the reference, which is the result of a generalized fixed-smeared crack model implemented
in INSANE by Penna [17]. It is also noted that despite using the bound-constrained with line search and with∥∥δX̄∥∥ /∥∥X̄∥∥ convergence, the peak load is already very close to what was expected. And the best result is for the
bound-constrained solver with ||F̄Θ(ā

k
n + 1)|| convergence.

4.2 L-Shaped Panel

The second result will be based on the L-Shaped Panel shown in Fig. 4a with measurements in millimeters.
A vertical point load F is applied upward at a distance of 30mm to the right edge of the horizontal leg, with the
corresponding vertical displacement at the same place recorded. The mesh used is formed by CST (Constant strain
triangle element) elements, shown in Fig. 4b. Increments of 2 · 10−3 were considered in all cases. The results for
the load versus vertical displacement of the point where the load is applied for each processing are shown in Fig. 5.

Analyzing Fig. 5, it is noted that when the line search is not used, the bound-constrained solver presents a load
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Foz do Iguaçu, Brazil, November 21-25, 2022



The importance of linear search for the bound-constrained solver for phase-field modeling of fracture in quasi-brittle materials with FEM

50
0

Thickness: 100

F,u 25
0

25
0

500

30

(a)
X

Y

Z

(b)

Figure 4. L-Shaped Panel. (a) Problem setting.(b) T3 mesh (h = 25 mm in the unrefined region and h = 4 mm in
the refined region)
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Figure 5. Curves of load versus displacement for L-Shaped Panel

peak a little far from the reference, and the result presents numerical instability. When using the bound-constrained
solver with line search solver and with

∥∥δX̄∥∥ / ∥∥X̄∥∥ convergence, the peak load is within the expected range and
there is no numerical instability. When using the bound-constrained solver with line search and ||F̄Θ(ā

k
n + 1)||

convergence, not all results are processed, only when the step is reduced to half the step (increments of 1 · 10−3,
doubling the number of necessary steps - Processing 5) that all the desired results are obtained.

4.3 Discussions

Although the type of convergence changed the result a little for line search, the two shown did not change the
result significantly. In addition, it can be seen that for ||F̄Θ(ā

k
n +1)|| convergence, perhaps there will be no results

from a certain step, so it is necessary to reduce the step size for the imposed displacement (since the displacement
control method was used), until it can be processed. It is worth mentioning that an Bactracking Armijo was used
for the linear search, so other types of searches may present better results.

5 Conclusion

In this article, the phase-field theory and a bound-constrained solver were briefly presented. Later, the im-
portance of linear search for a bound-constrained solver through numerical models was shown. In addition, the
analysis showed that depending on the convergence, the results can be slightly altered, as well as not being able to
obtain them, requiring a reduction in the step size.
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Foz do Iguaçu, Brazil, November 21-25, 2022


	Introduction
	Phase-field modelling for fracture
	Crack Surface Density Function
	Energy Degradation Function
	Equations of Phase-Field Models in Weak Form
	Hybrid Constitutive Model

	Bound-Constrained Solver for Phase-Field
	Bound-Constrained Solver
	Tolerances

	Numerical Examples
	Uniaxial Traction Test
	L-Shaped Panel
	Discussions

	Conclusion

