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Abstract. In this study, a positional Finite Element Method (FEM) formulation is applied to simulate orthotropic 

symmetric laminated plates and shells. Alternatively to the traditional FEM, the positional formulation uses a total 

Lagrangian description based on generalized vectors and nodal positions, providing an inherently nonlinear 

geometric formulation. However, basic kinematics are not able to satisfy a continuous stress distribution along the 

laminate thickness. The stress discontinuity is related to the emergence of a zig-zag displacement profile in the 

transverse direction caused by mechanical properties changing between adjacent laminas. Therefore, the proposed 

formulation introduces new degrees of freedom to regularize the classical Reissner-Mindlin kinematics and 

reproduce the zig-zag effect. In addition, the mechanical model uses Green-Lagrange strain and the Saint Venant-

Kirchhoff constitutive law, which allows moderate strain. A numerical example is employed to validate the 

proposed formulation and demonstrate its quality when compared with literature results. 
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1  Introduction 

Composite materials have been used as alternative substitutes for conventional materials (e.g. metal and 

wood) as a strategy to introduce additional flexibility to designs and provide better engineering properties. There 

are commonly three types of composite materials according to Reddy [1]; one of them are the laminates. Laminated 

composites are formed by combining different materials in layers of generally uniform thickness, also called 

lamina or ply, overlapped and adhered to each other along the transverse direction.  

At the end of the manufacturing process, each lamina presents a material with homogeneous characteristics 

on a macroscopic scale and mechanical properties superior to those of its constituents. This configuration provides 

high values of strength and stiffness per unit mass of the structural element, whose characteristics are desirable in 

the construction, automotive, and aerospace industries. In some cases, the mechanical properties may also change 

as a function of direction, for example, in orthotropic, anisotropic, and fiber-reinforced laminated materials. 

Due to the discontinuity of mechanical properties in the transverse direction, the displacement field may 

present a sudden change of inclination at the interface of each lamina along the thickness, so-called “zig-zag effect” 

[2]. According to Coda et al. [3], based on the results of Carrera and Ciuffreda [2], the influence of the zig-zag 

effect is more important in thick laminated plates, or when the ratio between the length and height of the plate is 

smaller than 5 or the ratio between the stiffness of laminas is large. Nevertheless, special attention is paid to the 

analysis of the mechanical behavior of laminated structures, since some theories are not able to satisfy the 

continuity of transverse stresses in interlaminar regions. 

According to Oh et al. [4], the theories for mechanical analysis of laminated shells are divided into three 

categories: smeared theories, layerwise theories and simplified zig-zag theories. The first are examples of theories 

that cannot satisfy a continuous distribution of transverse stresses between laminas. The second, the layerwise 

theories (LW), are able to model the zig-zag effect and adequately predict the local strains and stresses through 

thickness since they employ layer-dependent degrees of freedom. However, their computational cost becomes high 

as the number of layers increases. In contrast, the third category employs a zig-zag profile of displacement which 
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provides accurate analysis of the strain and stress fields with few degrees of freedom, as well as ensuring free 

tensile conditions on top and bottom surfaces between laminas [4,5]. Because of these advantages, the present 

study combines the simplified zig-zag theories with the FEM positional formulation. 

This combination is not new. Coda et al. [3] regularized the transverse stresses in laminated plates and shells 

without any new degree of freedom by using the zig-zag mode enrichment of Green's strain tensor. The formulation 

uses a kinematics similar to that of Reissner-Mindlin, however, to compensate the lack of a new degree of freedom 

the kinematics has been enhanced by a pre-processor that uses a simple supported beam element. More recently, 

Coda et al. [6] improved the zig-zag enrichment by introducing new degrees of freedom for laminated or 

functionally graded two-dimensional beams developing small and large strain. Unlike the previous work [3], Coda 

et al. [6] eliminated the dependence of the positions of adjacent interfaces on the center of stiffness, thus 

eliminating the zig-zag effect in homogeneous sections modeled with numerical laminas.  

As an extension of the methodology proposed by Coda et al. [6], the present work presents a positional 

formulation of the FEM for orthotropic laminated plates and shells that includes the regularization of transversal 

stresses and the zig-zag effect as degrees of freedom. In addition, an enrichment along the transverse direction is 

introduced into the kinematics to allow linear variation in thickness and eliminate the volumetric locking of the 

cross section in the current configuration. The proposed formulation is a cinematically exact description and 

geometrically nonlinear total Lagrangian approach in FEM. To testify the potential of the proposed formulation, a 

numerical example is tested and compared with the semi-analytical results. 

2  The Positional Finite Element Method 

The positional formulation of the FEM, originally conceived by Bonet et al. [7] for fluid-supported membrane 

analysis and later extended by Coda [8] for solid mechanics applications, uses nodal positions and generalized 

vectors as nodal variables instead of displacements and rotations. The approach presented in this section is based 

on Coda [9], whose reference is recommended for further details.  

2.1 Basic formulation 

Differently to the classical Reissner-Mindlin kinematics, in the positional formulation the shell or plate 

thickness can vary along the equilibrium path. Therefore, the basic formulation can be classified as solid-like 

kinematics [3]. To allow linear variation of the thickness in the currently configuration, an initial enrichment is 

introduced in the basic formulation through nodal parameter 𝑇. It avoids the “thickness locking”, as described by 

Bischoff and Ramm [10]. 

Considering the shell (or plate) reference surface coincident with the stiffness center of the cross section, the 

mapping functions depicted in Figure 1 at the initial (𝑓0) and current (𝑓1) positions are: 
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in which 𝑘 represents a lamina of thickness ℎ0
𝑘, 𝑑𝑘 is the distance from the mid surface of lamina 𝑘 to the reference 

surface, 𝑋𝛼𝑖 is the 𝑖-th initial coordinate of node 𝛼 and 𝑌𝛼𝑖 is the 𝑖-th current coordinate of node 𝛼, whose value is 

unknown. 𝑉⃗⃗ is the generalized vector in the initial configuration (unitary and normal to the reference surface) and 

𝐺⃗ is the generalized vector in the currently configuration (without restrictions). The Lagrangian shape function 𝜙𝛼 

related to node 𝛼 is evaluated in the dimensionless coordinates 𝜉1 and 𝜉2 from the reference surface mapping (Fig. 

1). The isoparametric domain is completed with the dimensionless coordinate 𝜉3
𝑘, which is related to the thickness 

of lamina 𝑘. 

The total deformation function 𝑓 that describes the configuration changing is given, for each lamina, by: 

 1 0 1( ) .k k kf f f   (3) 
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Figure 1. Mapping the initial and current configurations (omitting laminas) 

The gradient of Equation (3) can be written, for each lamina, as: 

 1 0 1( ) ( ) ,k k k kfA A A   (4) 

in which: 

 A and A
0 1

0 1 .
k k

k i k i
ij ij

j j

f f
  (5) 

At this point, the basic formulation has six known nodal values in the initial configuration (stored in 𝑋⃗ =

{𝑋1, 𝑋2, 𝑋3, 𝑉1, 𝑉2, 𝑉3}𝑡) and seven unknown degrees of freedom by node in the current configuration (stored in 

𝑌⃗⃗ = {𝑌1, 𝑌2, 𝑌3, 𝐺1, 𝐺2, 𝐺3, 𝑇}𝑡). In the case of orthotropic material these degrees of freedom are transformed to the 

orthotropic direction according to the following: 

 and ,t tX X Y YR R   (6) 

whereR is the rotation matrix, andX and Y are the vectors in the local direction. 

2.2 The zig-zag enrichment 

The proposed enrichment is included in the 𝑓1 mapping function by introducing the zig-zag mode 𝑎𝑖𝑘𝑧(𝑘) +

𝑏𝑖𝑘 in Eq. (2), where 𝑎𝑖𝑘 and 𝑏𝑖𝑘 are constants of straight lines for the 𝑘-th lamina, 𝑖 = 1,2 are the orthotropy 

directions and kz = 𝑑𝑘 + (ℎ0
𝑘/2)𝜉3

𝑘. The values of 𝑎𝑖𝑘 and 𝑏𝑖𝑘 are determined only once for a cross section by 

imposing the compatibility and equilibrium conditions between adjacent laminas presented by Coda et al. [6]. For 

symmetrically laminated plates and shells, one writes: 
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in which 𝑍𝛼
𝑖  is a new degree of freedom (the intensity of the zig-zag mode) at node 𝛼 following the orthotropy 

direction 𝑖. 𝐺̅1  and 𝐺̅2  are vectors orthogonal to the generalized vector and following the orthotropy directions. 

In order to smooth the stress distribution, the next deductions are described for a small displacement problem 

(with rotation 𝜃 and internal points displacements 𝑑1). The calculation of shear stress in a horizontal beam 

developing small displacements, considering the horizontal equilibrium of parts of the cross section, is given by: 

 
1 " "

( ) ( ) ,
top

k

z
k k k

k k i i k j j k k kz
E z E Z a z b dz   (8) 

where 𝐸𝑘 is the longitudinal Young modulus of a lamina 𝑘 and 𝑧1
𝑡𝑜𝑝

 is the upper limit of the cross section. 
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Solving Equation (8) and dividing the result by the shear elastic modulus of lamina 𝑘 (𝐺𝑘), one provides the 

distortion /k k kG , i.e.: 

 2 2 " 2 2 "( ) ( ) { ( ) ( )} ( ) ,top top topk
k k k k k j j k k k k k k k k p pA C z C z F I z z L M z z Z   (9) 

whose constants are (𝑥̅ is the distance from the base of the cross section to the midline of the lamina): 
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Integrating Equation (9) following the 𝑧 transverse direction of the cross section, the horizontal displacement 

profile 𝑑̅1 is obtained, in which the upper bar indicates a scaling to be introduced. Solving the scale problem, the 

following expression can be written for small displacements: 

 1 1 2 1 1 2 2 1 2( , ) ( ) ( , ) ( ) ( , ) ,k k k
i l l j jd U u z u z Z   (11) 

with 𝑈𝛼𝑖 = 𝑌𝛼𝑖 − 𝑋𝛼𝑖, and: 
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In order to introduce Equation (11) in the geometrically non linear kinematics, one subtracts 𝑧𝑘 from the term 

𝑢1
𝑘 to preserve rigid body movements. This is performed in both orthotropy directions by introducing the difference 

term 𝑟𝑖
𝑘 = 𝑢1

𝑖𝑘 − 𝑧𝑘 , generating the new degree of freedom 𝑅𝛼
𝑖  at node 𝛼 of the directions 𝑖 = 1,2. From these 

considerations, Eq. (7) is rewritten as: 
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Therefore, introducing 𝑅𝛼
𝑖  (called here regularization) and 𝑍𝛼

𝑖  (zig-zag) in the 𝑓1 mapping function the 

enhanced kinematics has 11 degrees of freedom by node 𝛼 (𝑌⃗⃗𝛼 = {𝑌𝛼1, 𝑌𝛼2, 𝑌𝛼3, 𝐺𝛼1, 𝐺𝛼2, 𝐺𝛼3, 𝑇𝛼 , 𝑅𝛼
1 , 𝑅𝛼

2 , 𝑍𝛼
1 , 𝑍𝛼

2}𝑡). 

2.3 Equilibrium equations and numerical solution 

In the positional FEM, the equilibrium equation is based on the minimization of the total mechanical energy 

(П), called Principle of Stationary Mechanical Energy. Focusing on static analysis, i.e. considering only the 

portions of total strain energy and potential energy of external forces , this principle is written as:  

 0,
Y Y Y

  (14) 

where: 

 d
0

0: ,
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V
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  (15) 
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0
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in which :S EC  is the second Piola-Kirchhoff stress tensor, E  is the Green-Lagrange strain tensor, C  is the 

constitutive tensor for orthotropic material, 𝑞𝑖𝛼
0  is the superficial conservative load distributed in node 𝛼 of the 
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direction 𝑖, A0 is the reference surface area, 𝑉0 is the plate or shell volume, and the index “0” indicates the 

Lagrangian description of the formulation. 

The system of equations obtained from Eq. (14) is nonlinear regarding nodal parameters 𝑌⃗⃗. The strategy 

adopted here to solve this system is the Newton-Raphson iterative method. Concisely, the Newton-Raphson 

procedure is described as follows: one chooses a trial solution 𝑌⃗⃗0 and calculates the unbalanced force vector 𝑔⃗(𝑌⃗⃗0) 

according to Eq. (17). By applying Eq. (18) one finds the variation of position 𝛥𝑌⃗⃗ that corrects 𝑌⃗⃗0. With this new 

position vector, the procedure is repeated until the error (𝐸𝑟) becomes smaller than the adopted tolerance (Eq. 19). 

 ( ) ,g Y
Y

  (17) 

 1
0( ) ( ),HY g Y   (18) 

 

0

,
Y

Er tol
Y

  (19) 

where H  is the Hessian matrix and 𝑡𝑜𝑙 is the tolerance. 

After determining the solution that satisfies the stopping criterion (Eq. 19), the Cauchy stress tensor  can 

be calculated by the following relation: 

 .
det( )

tA S A

A
  (20) 

3  Numerical example: Cross-ply plate loaded by transverse constant pressure 

A simply supported square plate (Figure 2) is subjected to a uniform transverse load 𝑞. The plate is composed 

of 3 laminas of the same thickness (ℎ/3) with symmetrical ply arrangement (0/90/0), in which 0 indicates that the 

orthotropic direction 1 coincides with 𝑥1 axis and 90 indicates that direction 1 coincides with 𝑥2 axis. 

 

Figure 2. Square laminated plate subjected to surface distributed load 

Each lamina is composed by orthotropic material with the following properties: 𝐸1= 200 GPa, 𝐸2=𝐸3= 8 GPa, 

𝐺12=𝐺13= 4 GPa, 𝐺23= 1.6 GPa and 𝜈12= 𝜈13= 𝜈23= 0.25. Using the adopted values, the example comprises the 

cases of thick (𝑎/ℎ = 4) and thin (𝑎/ℎ = 100) plates. In order to compare the numerical results with the semi-

analytical solution presented by Carrera and Ciuffreda [2], the parameter 𝑇 is constrained and equal to zero to 

ensure no variation of the plate thickness. In addition, the transverse displacement (𝑈𝑧) and the normal and shear 

stresses (𝜎11, 𝜎13) are given in normalized form, according to the expressions: 

 
3

2 11 13
11 134 2

100
, , ,
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in which 𝜎𝑖𝑗 is measured at the point (𝑥1, 𝑥2, 𝑥̅3) throughout the normalized thickness 𝑥̅3 = (𝑥3 − ℎ/2)/ℎ. 
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The entire plate was discretized with a structured mesh of 8𝑥8 triangular cubic finite elements (128 elements 

and 625 nodes). Two kinematics are analyzed, denoted by the following acronyms: 

 RZ0: basic kinematics (without regularization and zig-zag enrichment). 

 RZ1: proposed kinematics with regularization free and zig-zag restricted and equal zero in the boundaries. 

Carrera and Ciuffreda [2] addressed the example with several distinct theories but only the layerwise model 

has been adopted herein as benchmark, which includes both zig-zag effect and interlaminar continuity at each layer 

interface. The normalized transversal displacement in the center of the square plate is compared with the selected 

theory in Table 1. A tolerance of 10−6 was used in the Newton-Raphson iteration. 

Table 1. Normalized displacement U̅z in the center of the square plate 

𝑎/ℎ 4  100 

RZ0 2,3846 0,6244 

RZ1 3,1351 0,6261 

Carrera & Ciuffreda [2] 3,0444 0,6713 

 

From Table 1, the results corresponding to the RZ1 kinematics are closer to the values reported by Carrera 

and Ciuffreda [2] than those obtained with the RZ0 kinematics, especially for the thick plate. This demonstrates 

that transverse displacements can be underestimated when the regularization and zig-zag effect are neglected. 

Figure 3 shows graphical results for normalized shear stress at the mid supported side of the plate and normalized 

normal stress at the center of the plate. 

(a) 𝑎/ℎ = 4     (b) 𝑎/ℎ = 100 

(c) 𝑎/ℎ = 4                    (d) 𝑎/ℎ = 100 

Figure 3. a, b) Normalized shear stress 𝜎13 at coordinates (0, 𝑎/2, 𝑥̅3); c, d) Normalized normal stress 𝜎11 at 

coordinates (𝑎/2, 𝑎/2, 𝑥̅3) 
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The influence of the zig-zag effect is more evident in Figure 3. In general, the curves corresponding to RZ1 

adhered well to the reference values [2] for both thick and thin plates. As expected, the RZ1 kinematics satisfied 

the continuity of shear stresses between laminas, while the RZ0 curves are piecewise continuous along the plate 

thickness. This happens because the RZ0 kinematics is governed by k k kG , which is able to satisfy the stress 

continuity solely in lamina 𝑘 without the improvements proposed in the present work. 

4  Conclusions 

The tested example shows that the proposed formulation regularizes the stress profiles in symmetrical 

laminates and provides transverse displacements consistent with the reference values. It is worth stressing that the 

enhanced kinematics uses only 11 degrees of freedom by node, regardless of the number of laminas. Therefore, 

the proposed nonlinear geometric formulation proved to be efficient and promising for the analysis of symmetric 

laminated plates and shells. The next step seeks more general applications and to extend the same formulation to 

asymmetric laminated sections. 
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