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Abstract. The present work aims at the implementation and validation of a displacement-based two-dimensional
numerical formulation including several sources of non-linearities in steel-concrete composite frames, such as
second-order effects, plasticity and beam-to-column semi-rigid connections. The co-rotational-based approach
is used to describe the finite element formulation, allowing large displacements and rotations in the numerical
model. Rotational pseudo-springs are used at the ends of the finite element, where the gradual loss of stiffness
is determined by combining the normal force and bending moment (NM) in the cross-section. The limiting of
the uncracked, elastic and plastic regimes are defined in the NM diagram. In the cross-sectional analysis, the
Strain Compatibility Method (SCM) is used to capture the axial strains in the section components. In this way, the
constitutive models of the materials are described by continuous functions. The semi-rigid connections are also
simulated by the rotational pseudo-springs at the finite elements ends, and the connection behavior is given by
its moment-rotation relationship. A multi-linear model for beam-to-column connections is used. To validate the
proposed numerical formulation, the results obtained are compared with numerical and experimental data available
in the literature. Since the model proposed here starts with the concentrated simulation of nonlinear effects, an
examination of the finite element mesh refinement is also carried out.

Keywords: Steel-concrete composite structures, semi-rigid frames, lumped plasticity, cross-sectional analysis,
finite element method, non-linear analysis

1 Introduction

There are three basic pillars for the elaboration of a structural project: safety, time (preparation and execution)
and economy. The optimization of the three variables is mainly related to the materials and analysis methods used.
In civil construction, when it comes to the choice of materials, Lemes et al. [1]evidence that the use and concrete
are the usual ones, in the way that they lead to a better physical and mechanical properties.

The main advantages of composite steel and concrete structures are related to increased strength and rigidity,
protection from metallic elements (fire and corrosion) and cost-effectiveness. Maximiano [2] adds that this type
of structural system also has advantages during execution, as it is possible to make the metal profiles support
the concrete elements during the curing process, reducing costs with shoring and increasing the free space for
movement of materials in the work.

Lemes [3], however, warns that the analysis of this type of mixed structural system presents challenges and
in the search for its behavior optimization, and that advanced computational analysis stands out because it allows
the development of numerical processes that make possible the solution of problems. problems that would be
unfeasible once they extrapolate analytical analyzes and simplifications of design rules.
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Weng and Yen [4] corroborate this reality by demonstrating experimentally that composite structures can
approach or distance from the real structural behavior in the different forms of analysis existing in the different
design standards. Faced with the constant need to understand the realistic way in which mixed steel and concrete
structures behave, this research brings the non-linear analysis of structures (MRPR) approaching the analysis of
mixed ported systems.

2 Methodology

The advanced analysis of structures is based on the process of discretization of the system by the Finite
Element Method (FEM) and the physical nonlinearity of the lattice structures is commonly addressed through the
Plastic Hinge Method (PHM) or through the Plastic Zone Method (PZM). In MRP, plasticity is considered to be
concentrated only in the nodal points of the structural system model and therefore has the advantage of having low
computational demand; the MZP considers the inelasticity along the entire length of the finite element (distributed
plasticity), and thus presents a high computational demand. [3] [5]

The Refined Plastic Hinge Method (RPHM), which will be adopted in this work, is considered a simplified but
efficient alternative to the MZP. With the refinement of this method, it becomes possible to consider and capture the
transition from the elastic regime to the plastic regime gradually with the use of null-length springs located at the
element nodes, as illustrated in Figure 1. Lemes et al. [1] explains that this process of system stiffness degradation
starts when the elastic regime limit imposed by a plasticization start curve is reached by the combination of normal
forces and bending moment, which means that the cross section has linear behavior. elastic until this limit is
exceeded.

Figure 1. Hybrid finite element for semi-rigid connections simulation

It is important to highlight some considerations involving the FE formulation used in this paper:

• all elements are initially straight, prismatic, and the cross-section remains plane after deformation;
• the effects of global instability that may occur in three-dimensional problems (e.g., lateral and torsional

buckling) are ignored considering a locking system out of plane;
• the effects of local instability are neglected, such as the buckling of the steel section plates, so the section

can reach its full plastic rotation capacity;
• large displacements and rigid body rotations are allowed;
• the shear strain effects are ignored;
• yielding of the cross-section is governed by only normal stress; and
• the nonlinear behavior of the beam-to-column connections is defined exclusively by the flexure through the

moment-rotation relationship.

With Figure 2 it is possible to better understand the element kinematics and the displacement notations (trans-
lations and rotations) used. For structural elements that have large displacements and/or large rotations, the global
degrees of freedom contain the rigid motion and the deformational part; the co-rotational approach therefore aims
to separate these parts.

Chang et al. [6] defines a local coordinate system (x′, y′) that moves continuously with the element, and is
used to describe a deformational part of the motion whose rigid motion is described as displacements (uig and vig ,
and hard efforts α− α0). He

The relation between global (uig, vig, θig, ujg, vjg, θjg) and local (δ, θi, θj) degrees of freedom is obtained
by a simple differentiation of the co-rotational displacements described in the function of global displacements and
can be seen in Lemes [3]. In a matrix form, this relation is expressed by the following:

∆ul = B∆ug (1)
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Figure 2. Displacements in global system coordinates

where ∆ul and ∆ug are the incremental displacements in local and global systems, respectively, and the transfor-
mation matrix B responsible for transforming the global displacements in local responses and vice-versa.

2.1 Element formulation

In the present work, the displacement-based formulation with concentrated plasticity in the nodal points is
applied. In this case, the axial and flexural stiffness degradation occurs exclusively at the FE nodes. Then, the
method is presented, introducing the material nonlinearity only. Some considerations and simplifications of this
formulation can be seen in [3] [1].

In the structural system modelling, the hybrid beam-column finite element of length L, delimited by nodal
points i and j (Figure 1), is used. This element has zero-length pseudo rotational springs at its ends, which are
responsible for the plasticity simulation by means of the parameter Sc, discussed in Section 2.4. The finite element
is referenced to the co-rotational system where the degrees of freedom are the rotations at nodes i and j, given by
θi and θj , and the axial displacement in j, . The terms Mi, Mj and P represent the bending moments and the axial
force in the respective degrees of freedom.
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(2)

in which β = (Spi + k22)(Spj + k33) k32k23
The terms k11, k22, k23, k32, and k33 are components of the beam-column stiffness matrix element, without

the pseudo-springs, below, where the terms are further discussed in the following sections.

k11 =
EsA

L
k22 =

Es(3Iefci + Iefcj)

L

k23 = k32 =
Es(Iefci + Iefcj)

L
k33 =

Es(Iefci + 3Iefcj)

L

(3)
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2.2 Concentrated plasticity approach

The co-rotational-FE model is adopted in the structural systems used, which brings a finite element beam-
column, defined by nodes i and j, as shown in Fig. 2. So the finite element equilibrium, in incremental form, is
given by:

∆fc = Kc∆uc (4)

The inelastic flexure terms of the matrix Kl, are obtained by a similar approach proposed by Ziemian and
McGuire [7]. In order to avoid any numerical integration in calculating element stiffness matrices during the
analysis, the flexure terms are calculated considering the moment-curvature relationship (M × Φ) tangent varying
linearly along the finite element length to the likely situation of a linear moment gradient [7]. Thus:

EI (x) =
[(

1− x

L

)
EIT,i +

x

L
EIT,j

]
(5)

where EIt,i and EIt,j are the tangent flexural stiffness, obtained as described in Section ??, in the nodal
points i and j, respectively.

The reduced stiffness matrix (only the first fraction of flexure terms - kcl(2,2), kcl(2,3), kcl(3,2), kcl(3,3) - see
Appendix A), k∗, is defined using the second derivative of Hermite interpolation functions used in Eq. (??) [8],
described in N, that is:

k∗ =

∫ L

0

NTEIT (x)Ndx (6)

in which:

N =

[
2

L

(
2− 3x

L

)
2

L

(
1− 3x

L

)]
(7)

2.3 Stiffness of pseudo-springs

The parameter Sc, in the Figure 1. is given per unit of flexural stiffness in radians, being defined within
3 domains. To determine its value, it is necessary to analyze what situation the structure is in. When in an
elastic regime (limited by the plasticization start moment), Sc is taken as infinite, adopting a high value (numerical
infinity). When the internal forces reach the moment of total plasticization, the complete degradation of the flexural
rigidity is considered, that is, there is the formation of a plastic hinge. Thus, Sc is taken as null. Numerically, a
very small value is adopted to avoid singularity problems. Finally. when in elastoplastic regime (an intermediate
request in relation to the values mentioned below), it is considered that the loss of stiffness happens gradually
through Equation 8, so that L is the finite element length; Mpr and Mer are, respectively, the ultimate strength
and early plasticization moments, defined according to the procedure described in Section 3; Ea is the modulus of
elasticity of steel; and Ihom is the moment of inertia of the homogenized section, obtained as described in 2.4

Sc =
EaIhom

L

(
Mpr −M

M −Mer

)
(8)

Being the moment of inertia of the homogenized section, Ihom, determined as follows form:

Ihom =

[
Ea +

Eb

Ea
Ib +

Ec

Ea
Iefc

]
(9)

2.4 Effective moment of inertia of the cross section

When the element is in an uncracked state, its cross section is intact and, consequently, its moment of inertia
is also intact. However, with the amplification of the load throughout the load history of the structure, the cracking
of the concrete component of the mixed cross section of the element can occur, which causes its area to decrease,
also modifying the value of the moment of inertia.

There is no specific equation to simulate the cracking of concrete from the rotational stiffness of the pseudo-
springs. Thus, the way to consider this effect in the formulation of the element is to insert the effective moment of
inertia within the expression of Sp and in terms referring to the bending of the stiffness Matrix 2.
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The value of the effective moment of inertia of the concrete, Iefc, depends on the relationship between the
acting moment and the resistant moment of the section, and can be calculated through Equation 4, proposed by
Branson and Metz [9] , Iefc1, so that if M ≤ Mcr : Iefc1 = Ic , if M > Mcr, the Iefc1 is given by the Equation
10

Iefc =

(
Mcr

M

)3

Ic +

[
1−

(
Mcr

M

)3
]
Icr, Iefc1 ≤ Ic (10)

where Mcr and M are, respectively, the cracking moment and the bending moment acting on the section, Ic
is the moment of inertia of the intact concrete section (initial slope of the moment-curvature relationship for zero
normal stress) and Icr is the moment of inertia of the cracked section (assessed in the non-linear analysis of the
section at the load limit point of the moment curvature relationship).

3 Numerical analysis

In this section we study one of the composite frames tested and presented by Bui and Kim [10] and Bui et.
al [11]. Such structures are frames with the same dimensions, as illustrated in Figure xx, however with different
cross sections of the columns: a tubular section (P1) and another rectangular (P2), as can also be seen in the figure
below.

Figure 3. The portico and the two cross sections

Both structures have applied loads P vertically at the top of the column, and a horizontal load H at the top
of the column on the left. The authors establish the values for P=28000 Kn and H = 35 kN. The results obtained
for frames P1 and P2 are obtained through an increasing load factor λ applied to these curved loads, in order to
obtain the load x displacement curve and analysis using the Branson and Metz Equation (1963). It is interesting to
say that a low sensitivity to the influence of the mesh was noticed, demonstrating that less refined meshes generate
already convergent results.

As for the properties of the materials used, the authors cite that for steel, Es = 200 GPa, υ = 0.3, and the
yield strength (fy) and ultimate strength (fu) are 250 MPa and 400 MPa, respectively. The concrete compressive
strength (fc) the concrete colors is 38 MPa.

In the graphs below, illustrated in the figure 4, it is possible to verify the results obtained by the formulation
proposed in this work, with P1 on the right and P2 on the left. In the same graphs it is also possible to visualize
the results obtained by [10] and Bui et. al [11], being one of the curves obtained through its formulation and the
second curve obtained through the ABAQUS software.

In both structures the behavior obtained is very similar between the three curves. In P1 the initial stiffness is
practically the same in the three results and the critical loads obtained are very close. In the case of P2, there is a
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Figure 4. Equilibrium of P1 (left) and P2 (right)

small difference in the initial stiffness as well as in the critical loads obtained.

4 Conclusions

This article presents a consideration between nonlinear cross-section for steel-concrete analysis considering
rigid and semi-rigid connections to beam and columns. (The formulation governing the beam-column element
is constructed as linearity effects are not column effects P - δ P - ∆), and material nonlinearities. and uses o
concentration the analysis of displacements at nodal points for an analysis of steel-concrete beams Method of
Rotula Plastica Refindo to capture a transition from the elastic regime to the plastic regime gradually with the use
of null-length springs located at the nodes of the element.

The example of a frame section is consistent, as it was simulated considering the results presented in the
literature [10] [11]. Some differences considered can be considered small, but can be justified by things. yield
strength at the flange and web of the steel section; and not linear process stop criterion.

A test on the finite element mesh refinement was also performed. It was verified in the presented results that
the formulation presents low sensitivity to mesh refinement, highlighting that less refined meshes already present
satisfactory results in both methodologies. A sensitivity analysis to the input data was also performed verifying the
sensitivity of the formulation presents. In general, it is concluded that the formulation is efficient. Given this, it is
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likely that the presentation will be considered satisfactory results and can be considered in structural construction.

Acknowledgments

The authors acknowledge the financial support of the Brazilian research agencies CNPq , CAPES, FAPEMIG,
PROPP/UFOP and UFLA for their support during the preparation of this work.

References
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