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Abstract. This work investigates the outcomes of using an immersed boundary technique for the mixed finite 

element formulation of tridimensional incompressible fluid flows governed by the Navier-Stokes equations with 

internal fluid-body interfaces. A classical Eulerian approach is followed to describe the fluid. A Newton-

Raphson scheme is devised to solve the resulting non-linear equations within a time step. The fluid-body 

interface is treated by the Nitsche’s method, which is an immersed boundary technique whereby the fluid 

boundary conditions over the contact with the bodies are imposed weakly. In order to ascertain the accuracy and 

efficiency of the adopted method, numerical simulations of tridimensional flows of an incompressible fluid are 

analyzed and compared against reference solutions. This work refers to an intermediate stage of a PhD research 

that aims to model problems of fluid-particle interaction (FPI) and particle-laden fluids. 

Keywords: immersed boundary technique, Navier-Stokes equations, finite element method, 3D incompressible 
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1  Introduction 

In the fluid-body interaction realm, if we restrict only to the way how the numerical method handles the 

interface between the fluid and the body phases, the most common numerical approaches currently available 

may be categorized into two major groups. The first one is called coincident boundary methods, being those in 

which the computational grid of the fluid ends exactly where the computational grid of the solid begins (see 

Donea et al. [1]). The second one is the so-called immersed boundary method in which the fluid and body 

meshes are totally independent from each other, and overlapped (see Benk, Ulbrich and Mehl [2]). 

In this work, the objective is to evaluate the performance of an immersed boundary technique for 3D 

computational simulations of incompressible fluid flows governed by Navier-Stokes equations. In particular, we 

are interested in the Nitsche’s method (Nitsche [3]) since, among other issues, it does not increase the system’s 

degrees of freedom and has a rather straightforward implementation. A Newmark scheme (Newmark [4]) is used 

to time-integrate the governing equations. For the spatial discretization, a mixed finite element formulation 

within a standard Galerkin framework is used with a special 3D Taylor-Hood tetrahedral element which satisfies 

the LBB-condition (see e.g. Wieners [5] and Bruman and Fernández [6]). The fluid problem is treated through an 

Eulerian description, which avoids re-meshing or mesh adaptation throughout the solution. A Newton-Raphson 

procedure is iteratively performed within the Newmark time integration scheme to deal with the non-linearities. 

Numerical instability that may potentially arise from convective-dominated problems is handled considering low 

to moderate Reynolds numbers. 

We point out that this work reports only partial results from a broader research, in which we are developing 

a numerical framework to deal with 3D fluid-particle interaction problems. 
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2  Governing equations and finite element formulation 

2.1 Fluid 

Let us considerer the incompressible viscous flow formulation for the Navier-Stokes equations: 

 div in ,
d

dt

u
T b    (1) 

 div in 0 .u     (2) 

Eq. (1) is the well-known conservation of linear momentum of a material point of the fluid and eq. (2) is the 

mass conservation principle (it is equal to zero due to the incompressibility assumption). The problem domain is 

referred to as , whereas , ,u T  and b  are the fluid’s density, velocity field, Cauchy stress and volumetric 

force per unit mass, respectively. 

Considering an Eulerian description and Newtonian material law for the fluid, the following system of 

differential equations arise from eq. (1) and eq. (2): 

 
div in 

div   in ,

2 ,

0

s pu u u u b  

u
  (3) 

wherein d dtu u  (material time derivative),  is the fluid’s kinematic viscosity, su  is the strain rate 

tensor and p the fluid’s kinematic pressure. 

Boundary conditions are either of Dirichlet (essential) or Neumann (natural) types. They are defined as 

 
  in ,

in ,
u

t

u u

Tn  t   
  (4) 

where n is the unit outward normal vector to the boundary, and andu  t  are the prescribed traction and velocity 

vectors, respectively. The initial conditions can be written in function of the initial velocity 0u  as 

   in  0 0 .tu u   (5) 

The weak form of (3) is 

 div div, ; , , , , , , , ,
t

c a p q qw u u w u w u w u w t w b   w   (6) 

where w  and q  are arbitrary test functions for the velocity and pressure fields, respectively. The trilinear and 

bilinear forms of the convective and viscous terms are 

   and  ; , , : .c d a du w u w u u w u w u   (7) 

2.2 Time discretization and integration 

The time variable is discretized into time instants 0, 1, 2, , 1,, ,n n ft t t t t t , with the time-step size 

1n nt t t  for the integration. In the present work we used the Newmark’s method (see Newmark  [4]) to 

integrate the eq. (6). The fluid’s acceleration at time  1nt  is given by 

 
1

1
11

,
n n

n n

t

u u
u u   (8) 

where  is the Newmark’s integration parameter, and the notation with a superscript means the time instant at 

which the corresponding variable is referred. To enforce second-order accuracy in the integration, we adopt 

1 2 . By introducing eq. (8) into eq. (6), we get the semi discrete weak form as follows 
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div div

1

, ; , , , ,

, , , 1 , , ,
t

n
n n

t c a p q

t q

w u u w u w u w u

w t w b w u w u   w
  (9) 

2.3 Spatial discretization 

For spatial discretization, a standard mixed finite element scheme is applied. The velocity and pressure 

fields are the primitive variables of the problem and the fluid’s domain is discretized with the Taylor-Hood 

tetrahedral finite element (see Taylor and Hood [7]). Such element uses quadratic shape functions for the 

velocity field and linear shape functions for the pressure field to overcome the numerical instability (LBB 

compatibility condition). The finite element approximation can be written as 

 
  and  

  and  

,

,
u e p e

u e p e

p

q

N u N p

N w N q

u

w
  (10) 

where uN  and pN  are matrices that contain the element’s shape functions of the velocity and pressure fields, 

respectively, and eu  and ep  are the vectors that collect the element’s nodal degrees of freedom. The fully 

discrete weak form is obtained by introducing eq. (10) into the semi discrete weak form (9) and after some 

algebra we reach the matrix form of the fluid problem as below 

 
T

1 1 1 1 1 1

1

1 1 1

,
n n n n n n n n

n
t t
Mu C u u Ku Gp f Mu Mu

G u 0
  (11) 

where M , C , K , G  and TG  are the mass, convective, viscous, gradient operator and divergent operator 

matrices, respectively. Still in (11), 1nf  is the vector that contains the field forces and boundary conditions. 

The system of equations (11) is non-linear due to the convective term, and its solution is achieved using a 

Newton-Raphson scheme in which complete quadratic convergence is guaranteed. For more details about the 

numerical derivation and implementation, the interested reader is referred to Gomes and Pimenta [8]. 

3  Enforcement of interface constraints 

In the realm of fixed grid methods, the Nitsche’s method (Nitsche [3]) has continually gained great 

attention in the context of implicit interfaces modeled by the XFEM (Dolbow and Harari [9]), also with 

imposition of constraints along non-matching surface grids (Bazilevs and Hughes [10]). In this work, the 

Nitsche’s method is used to enforce the interface constraints (Dirichlet boundary conditions) for treating the 

mechanical interactions of overlapping finite element meshes, as depicted in Figure 1. One of the great 

advantages of this method is the fact that it does not add new degrees of freedom except from those of the 

original mesh. 

 

Figure 1. Embedded fluid-body interface. 
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Applying Nitsche’s method to the Navier-Stokes problem for incompressible fluid flow, the weak form is 

given as 

 

div div

1

1
2

1
1 2

1
, ; , , , ,

, , , , ,

, , , , ,

11
, , , , , ,

i i i i i

i i i
t

i i

n n

n

n

n
n n

c a p q
t

p q
h

q
h

q
h h t

w u u w u w u w u

u w w u n w n u u w

u n w n w t w b w u n u

u w u n w n w u w u   w

  (12) 

where h  denotes the local mesh size on the boundary i , n  is the normal derivative of , and 1  and 2  

are penalty coefficients. The interested reader is referred to Benk, Ulbrich and Mehl [2] for more details on the 

Nitsche’s method applied to the Navier-Stokes equations. The fully discrete weak form of eq. (12) in matrix 

form is given by 

 
T*

1 1 1 * 1 * 1 1 1

1

1

,
n n n n n n n n n

n
t t

M 1
u C u u K u G p f Hu Mu Mu

G u 0
  (13) 

where  

 

T T* T T T

T
T T T T T

T
T T T T T

, , and ,

, 

 and  

* *

,

1 2

,
i i

i

e e

i i
e u u j j e e u p e

e e

i i
e u u e e u u

e

d d

d d
h h

K K B B E F  G G D  G G D , H B E F

B A N N A D A N N A

E A N N A F A N N

e n n

n n ,
i e

e

A

  (14) 

in which eA  is the assembling matrix relative to the elements of the interface i . 

4  Numerical examples 

The formulation above was implemented in our in-house FEM code, which is written in FORTRAN 

language. In the next subsections we show two numerical examples to ascertain its validity and robustness. 

4.1 3D Steady laminar flow around a fixed particle 

This example consists of a three-dimensional laminar flow around a fixed particle (spherical geometry) 

within a narrow channel governed by Stokes equations. The geometry, the boundary conditions and the finite 

element mesh used are illustrated in Figure 2. 

 

Figure 2. (a) Geometry and boundary conditions for 3D steady laminar flow around a fixed particle; (b) Finite 

element mesh used, 292553 tetrahedral elements and 403705 nodes. 
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The fluid velocity at the entrance (inflow plane) of the channel is purely horizontal (x-direction) and flows 

a parabolic distribution along the cross-section of the channel, given by 

 
4

16
0, , , 0,mU yz H y H z

U y z V W
H

  (15) 

where 0.45mU m s  and 0.41H m  with Re 45  (Reynolds number). The fluid’s density is 
31.0kg m  and the kinematic viscosity is 3 210 m s . The coordinates of the center of the sphere are 

0.5,0.2,0.205C  and its diameter is 0.1D m . Notation for the velocity components is 

1 2 3, , , ,u u u U V W  and the boundary condition at outflow plane is zero traction. The penalty coefficients 

used were 4
1 2 10 . Figure 3(a) shows velocity and pressure results using a conventional simulation 

(i.e., applying the Dirichlet boundary condition over the fluid-body interface in a strong way). Figure 3(b) are the 

results in velocity and pressure fields using the immersed boundary technique with Nitsche’s method. As we can 

see, our results are in very good agreement with the conventional simulation. 

 

Figure 3. (a) Velocity and pressure isocurves from conventional simulation; (b) Velocity and pressure isocurves 

from Nitsche’s method. 

4.2 3D Unsteady laminar flow around two fixed particles 

This example consists of a three-dimensional unsteady laminar flow around two particles (also spherical 

geometry) within a narrow channel governed by the Navier-Stokes equations. Figure 4 shows the geometry and 

boundary conditions used in this example. 

 

Figure 4. (a) Geometry and boundary conditions for 3D unsteady laminar flow around two fixed particles; (b) 

Finite element mesh used, 158057 tetrahedral elements and 213992 nodes. 

The velocity profile used in this example is the same defined by eq. (15) with 1.0mU m s  and 
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0.5H m . The fluid’s density, the kinematic viscosity and the penalty coefficients are the same used in the 

previous example. The time interval adopted is 0 4.0t s  with 0.01t s  and 1 2 . The convergence 

tolerance used within the Newton-Raphson interactions is TOL 610 . 

Figure 5 and Figure 6 show the results in velocity and pressure fields. It is possible to observe that the 

velocity results show again very good agreement in relation to the conventional simulation. The pressure results, 

in turn, are slightly different than the conventional simulation. The Nitsche’s method is a kind of penalty method 

and when it is used to enforce the Dirichlet boundary conditions on i , it would trigger various artifacts in the 

pressure field in the vicinity of i  that may change the final results (specially for drag and lift forces). Thus, the 

choice of the penalty coefficients ( 1 and 2 ) and the mesh resolution around the i  is of great importance in 

such simulations. 

 

Figure 5. (a) Velocity isocurves from conventional simulation; (b) Velocity isocurves from Nitsche’s method. 

 

Figure 6. (a) Pressure isocurves from conventional simulation; (b) Pressure isocurves from Nitsche’s method. 
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5  Conclusions 

The main purpose of this work was to present a 3D computational simulation using an immersed boundary 

technique based on the Nitsche´s method for the mixed finite element formulation of incompressible fluid flows 

governed by Navier-Stokes equations with internal fluid-body interfaces. This is our first results for 3D 

simulations using such technique (i.e., Nitsche’s method). Regarding only the Nitsche’s method, the results 

showed a good agreement with the reference solutions, however, there is still some effort to understand how to 

correctly choose the penalty coefficients and appropriate mesh refinement in the vicinity of i  to produce better 

results. This work is still in progress and the next step is to evaluate the drag and lift forces on each body´s 

surface i , with which we hope to be able to solve fluid-particle interaction problems of particle-laden fluids. 
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