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Abstract. We propose a method for solving Risk Optimization (RO) problems based on the Stochastic Gradient
Descent (SGD) methods. SGD is used to minimize the expectation of functions. We approximate each limit state
function in the RO problem using the Chernoff bound, thus recasting the original RO problem as an expectation
minimization problem. The Chernoff bound approximation requires the evaluation of Monte Carlo sampling,
which could be expensive. However, once the Chernoff bound parameters are set, they can be used to cheaply
approximate the probabilities of failure of each state limit for several iterations. We propose a heuristic approach to
tune the Chernoff bound parameters after a distance from the last update. Moreover, we decay the update distance
each iteration, thus guaranteeing that the probabilities of failure approximations are accurate as SGD converges
to the optimum solution. We present numerical results supporting the efficiency of our approach to different RO
problems with applications in structural engineering. Comparisons of SGD equipped with our Chernoff bound
approximation against particle swarm optimization using sample average approximation validate the efficiency of
the proposed approach.
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1 Introduction

When designing engineering processes, it is often important to consider uncertainties. The two main ap-
proaches to optimizing engineering processes considering uncertainties are Reliability-Based Design Optimization
(RBDO) and Risk Optimization (RO) [1–3]. In RBDO, one sets the desired reliability level and treats it as a con-
straint. The RO approach, on the other hand, explicitly incorporates the probabilities of failure on the objective
function. Here, we focus on RO, given its generality.

Computing the probability of failure in engineering processes is usually impractical due to the high cost of
performing a large number of simulations. The most popular approach is to use sample average approximation by
approximating the original problem using Monte Carlo Sampling (thus turning the problem deterministic). Then,
solve the problem using standard deterministic optimization methods like Genetic Algorithm, Particle Swarm
Optimization, among others [4–6]. This approach has the drawback of requiring a large Monte Carlo sample to be
precise, dramatically increasing the cost of each optimization iteration.

Instead of splitting the original problem in a uncertainty quantification and a (deterministic) optimization
problem, we focus on solving both problems simultaneously by employing the stochastic gradient descent (SGD)
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method. The SGD works by sampling the gradient independently each iteration and then controlling the statistical
error by decreasing the step-size. The main advantages of the SGD are its low cost per iteration and its ability
to converge in high dimensional settings in the random parameters and design spaces. Recently, SGD has been
applied to engineering [7–9] and optimal experimental design [10, 11] with success. Moreover, some variations of
SGD like Adam [12] are known to converge even in the non-convex multimodal case.

Applying SGD to RO problems is not straightforward since SGD methods require an unbiased gradient es-
timator to converge. Even though the objective function of RO problems can be written as an expectation by
rewriting the probabilities of failure as expectations of indicator functions, this approach results in the loss of
continuity of the objective function and is not of practical use. Here, we advance on a previous work by the au-
thors [13] and use the Chernoff bound to approximate the probabilities of failure of each failure mode. Since the
Chernoff bound provides an upper bound of the probabilities of failure, we estimate not only the upper bound,
defined by a constant, as the slack of the inequality, providing an approximation that is as good as the Monte Carlo
Approximation used to tune the Chernoff bound parameters. Moreover, we provide a heuristic approach to update
the Chernoff parameters during optimization in such a way as to not overburden the optimization approach with
the extra cost.

While on [13] the authors solve some numerical problems using the same method presented here, these do
not fully take advantage of the SGD main strength, which is its ability to solve large dimensional problems. Here,
we apply Adam to RO problems using the Chernoff bound to a problem with 25 design variables and 12 random
parameters. The numerical results support the validity of our approach to solving larger problems.

2 Risk Optimization (RO)

In RO, one is interested in the design parameters d in the search space D that minimize the objective function
f , i.e.,

Find d∗ = arg min
d∈D

f(d), (1)

where

f(d)
def
= C0(d) +

m∑
i=1

Ci(d)Pf,i(d), (2)

The uncertainties are gathered in a random vector X ∈ X with probability distribution µX . For each limit
state function gi, we define the probability of failure as

Pf,i(d)
def
= P (gi(d,X) > 0) (3)

=

∫
gi(d,X)>0

µX(d,X)dX. (4)

For a limit state function gi
def
= Si/Ri, analogous to the one used in [14, Equation 1.15c], we have

Pf,i(d) = P (Si(d,X) > Ri(d,X)) (5)

= P

(
Si(d,X)

Ri(d,X)
> 1

)
. (6)

2.1 Chernoff bound on the probabilities of failure

The Chernoff bound is a direct application of the Markov inequality over the exponential of a random variable
[15]. Assuming a random variable Y , Chernoff’s bound can be written as

P (Y ≥ a) ≤
E
(
etY

)
eta

, t > 0. (7)

We can use (7) to bound the probability of failure. Thus, from (6), we can write

Pf,i(d) ≤ P̄f,i(d)
def
= min

ti>0

E
[
e
ti

Si(d,X)

Ri(d,X)

]
eti

. (8)

Since the upper-bound P̄f,i might not be tight, we define a correction factor γi such that

P̂f,i(d)
def
= γiP̄f,i(d) ≈ Pf,i(d). (9)
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To avoid direct evaluation of the probability of failure, we use the bound P̂f,i during the optimization proce-
dure. Then, instead of directly minimizing f as presented in (2), we minimize f̂ given by

f̂(d)
def
= C0(d) +

m∑
i=1

Ci(d)P̂f,i(d). (10)

By solving (10) instead of (2), we avoid evaluation of the probabilities of failure and its sensitivities. The next
section shows how to efficiently minimize (10) with SGD.

3 Stochastic Gradient Descent (SGD)

The SGD is an optimization method (or rather a family of methods) used to solve stochastic optimization
problems, where the objective function to be minimized is an expectation. The main advantage of SGD is that it
does not use the true gradient of the objective function but an unbiased estimate of the true gradient instead. Here,
to minimize the function f̂ of RO, we define an auxiliary function F satisfying

E[F (d,X)] = f̂(d). (11)

We thus take F as

F (d,X)
def
= C0(d) +

m∑
i=1

γiCi(d)
e
ti

Si(d,X)

Ri(d,X)

eti
. (12)

From (11), we observe that (cf. Appendix B in [9])

∇df̂(d) = ∇dE[F (d,X)] (13)
= E[∇dF (d,X) + F (d,X)∇d log(µX(d,X))]. (14)

By defining the gradient estimator as

∇dF(d,X)
def
= ∇dF (d,X) + F (d,X)∇d log(µX(d,X)), (15)

we see that ∇dF is an unbiased estimate for the gradient of f̂ . For this reason, ∇dF can be taken as a search
direction for SGD.

The SGD basic update rule for F : D ×X 7→ R that satisfies (11) is then given by

Sample X ∼ µX (16)
dk+1 = dk − αk∇dF(d,X), (17)

where αk is a sequence of decreasing step-sizes [9]. From (12) we have

∇dF (d,X) = ∇dC0(d) +∇d

 m∑
i=1

γiCi(d)
e
ti

Si(d,X)

Ri(d,X)

eti

 (18)

= ∇dC0(d) +

m∑
i=1

γi∇d (Ci(d))
e
ti

Si(d,X)

Ri(d,X)

eti
+ γiCi(d)

∇de
ti

Si(d,X)

Ri(d,X)

eti

 , (19)

with

∇de
ti

Si(d,X)

Ri(d,X) = tie
ti

Si(d,X)

Ri(d,X)
∇dSi(d,X)Ri(d,X)− Si(d,X)∇dRi(d,X)

Ri(d,X)2
. (20)

3.1 Adam algorithm

The Adam algorithm [12] is employed here for the minimization of (10) since it has been observed that it is
more robust than the original SGD update rule in the presence of noisy gradients [12]. Adam incorporates small
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modifications to SGD basic update rule as follows:

Sample X ∼ µX (21)

m(k+1) = β1m
(k) + (1− β1)∇dF(d(k),X) (22)

v(k+1) = β2v
(k) + (1− β2)(∇dF(d(k),X))2 (23)

m̂ =
m(k+1)

1− βk+1
1

(24)

v̂ =
v(k+1)

1− βk+1
2

(25)

d(k+1) = d(k) − α0√
k

m̂√
v̂ + ϵ

, (26)

where 0 < β1 < β2 < 1 and ϵ are parameters to be defined by the user.

3.2 Setting the parameters ti and γi of the Chernoff bound

Note that the tightness of the Chernoff bound in (8) depends on the parameter t > 0. In order to get an
optimal Chernoff bound, the parameter that minimizes the bound should be employed. Thus, for each limit state,
the parameter ti at iteration (k) is obtained from the minimization problem

Find t
(k)
i = arg min

ti>0

E
[
e
ti

Si(d,X)

Ri(d,X)

]
eti

. (27)

Once ti is found, the correction coefficient γi for each failure mode can be estimated from

γi =
Pf,i(d,X)

P̄f,i(d,X)
, (28)

Calibrating t and γ requires sampling X and evaluating S and R, which can be costly. Thus, being k the
iteration when they were last tuned, we update the parameters only if the distance of d(k) to d(k) exceeds a
decaying value,

Find t(k), γ
(k)
i if

∥∥∥d(k) − d(k)
∥∥∥ ≥ ϵt√

k
, (29)

with ϵt being a parameter to be set.
To mitigate the noise in the parameters, we use the moving averages

t
(k)
i

def
=

⌈
2

k

⌉ k∑
j=⌊ k

2 ⌋
t
(j)
i , γ

(k)
i

def
=

⌈
2

k

⌉ k∑
j=⌊ k

2 ⌋
γ
(j)
i . (30)

4 Size optimization of a truss with Gaussian loads

This example consists in finding the cross-section areas of the 25 elements of a truss structure in order to
minimize its volume subject to a penalization on the probabilities of its two failure modes: by compression and
by traction. The loads are applied in four nodes and each of the three components of each load are modelled as
independent Gaussian variables. The RO objective function to be minimized here is

Find d∗ = arg min
d∈D

25∑
e=1

LeAe(d) + 105(Pf,t(d) + Pf,c(d)), (31)

where Le and Ae are, respectively, the length and cross-section area of the e-th element; Pf,t is the probability of
failure due to traction; and Pf,c is the probability of failure due to compression. Failure is considered if the stress
on any element exceeds a threshold stress,

Pf,t = P (max(σ) > ft), Pf,c = P (min(σ) < fc), (32)
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Table 1. For the truss example in Section 4, the positions of the nodes with Gaussian loads, their mean, and
standard deviations.

Position Mean (kN) Standard deviation (kN)

[−37.5, 0, 200] [1,−10,−10] [1, 1, 1]

[37.5, 0, 200] [0− 10,−10] [1, 1, 1]

[−37.5, 37.5, 100] [0.5, 0, 0] [1, 1, 1]

[37.5, 37.5, 100] [0.6, 0, 0] [1, 1, 1]

where ft = 3 × 104 N/cm2 and fc = −1.2 × 104 N/cm2, noting that we use a convention of positive values
denoting traction and negative values denoting compression. The Gaussian-distributed loads are applied to four
nodes as presented in Table 1.

The cross section areas of the elements are bounded between 0.1 and 100 cm2, the elasticity modulus of
the material is E = 107 N / cm2, and the four bottom nodes are considered fixed to the ground. The initial and
optimized trusses are presented in Figure 1, where the thickness of the lines represent the cross-section areas of
the elements. The step size for Adam used is 0.01, and the other parameters are β1 = 0.99, β2 = 0.9999, and
ϵ = 10−8. We use a Monte Carlo approximation of size 1000 each time we tune the Chernoff bound parameters,
which we do according to (29) with ϵt = 100. We ran Adam for this problem for 10 iterations, using one gradient
evaluation of F per iteration. Moreover, 3000 extra evaluations of F were needed to tune the Chernoff parameters.

In Table 2, we present the truss volume, probabilities of failure due to traction and compression, objective
value function, and relative optimality for the starting point and the solution found using Adam. The probabilities
of failure are approximated using Monte Carlo Sampling with sample size of 106. The reference value was found
numerically by running Adam with an independent sample for 106 iterations. The convergence of the distance
to the optimum of the sequence generated by Adam is presented in Figure 2. It is clear that Adam succeeds
in converging to the optimum even with just one evaluation of ∇dF per iteration. The total number of 10000
∇dF evaluations and 3000 extra F evaluations is comparatively small considering the probability of failure at the
optimum. A sample average approximation approach would require a large Monte Carlo sample and would thus
not be able to perform many iterations with this budget.

(a) Initial structure (b) Optimized structure

Figure 1. Truss structure for Example in Section 4. The widths of the lines represent the areas of the cross-sections
of the elements.

5 Conclusions

Solving Risk Optimization (RO) problems is often an expensive task. In this work, we employ the Chernoff
bound of the probabilities of failure to recast the original RO problem as an expectation minimization. An approx-
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Table 2. Results for the example in Section 4.

Volume (cm3) Pf,t Pf,c f(d)
∣∣∣ f(d∗)−f(d)

f(d∗)

∣∣∣
Starting point 4981.5 6.60× 10−5 3.55× 10−1 40498.37 1034.72%

Adam solution 3814.4 0 2.29× 10−4 3837.31 7.52%

Reference solution 3833.1 0 1.02× 10−3 3569.03 0%

Figure 2. Convergence of the distance to the optimum for the truss example in Section 4.

imation of the original RO problem can be obtained using Monte Carlo sampling to get two parameters per failure
mode, the Chernoff parameter that gets the tightest upper bound and a second parameter that corrects the bound
slackness. Then, we use Adam, a robust Stochastic Gradient Descent method, to minimize the approximated RO
problem. Moreover, we provide an heuristic approach to tune the Chernoff parameters of each failure mode during
optimization in order not to render the optimization too expensive. The methodology is validated by optimizing
the design of a truss structure subject to random loads. The low cost of the procedure and the good convergence
achieved show that this approach is suited for RO, especially in the case when the dimension of the design and
random parameter spaces do not allow the use of surrogate models.
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