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Abstract. The present study aims at the non-linear analysis of steel-concrete composite cross-sections. The strain
compatibility method (SCM) is used to describe the sections deformed shape in each step of the incremental-
iterative solution process. Four-node quadrilateral finite elements (FE) are implemented to compose the FE mesh
of the analyzed sections. For the full analysis of the moment-curvature relationship, the SCM is coupled to path-
following strategies (adapted generalized displacement technique and adapted minimum residual displacement
method) to go beyond the critical bending moment points in the construction of the relations that describe the
complete cross-section mechanical behavior. Concomitantly, the strain-control strategy is implemented as an al-
ternative numerical approach and used for comparison, since the bending moment limit points do not prevent the
complete construction of the cross-section equilibrium path. The constitutive relationships are addressed explicitly,
as well as the residual stresses present in the steel sections. To validate the proposed numerical formulation, the
results obtained are compared with the numerical and experimental data available in the literature.
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1 Introduction

The analysis of cross-sectional behavior is important to measure the parameters of its stiffness and bearing
capacity, directly impacting the structural element behavior. Considering the nonlinear stress-strain relationships
of materials, the numerical analysis procedures must be able to accurately capture such effects.

For this evaluation, it is common to find studies that deal with the construction of interaction curves that
delimit the elastic regime and the resistant capacity [1], for example. It is also possible to find analyzes of the
cross-sectional behavior along the loading history through the moment-curvature relationship [2].

Bonet et al. [3] developed integration algorithms for the evaluation of reinforced concrete cross-sections sub-
jected to biaxial bending and axial force. The decomposition of the cross-section into layers, with quadrilateral
finite elements, was performed and Gauss quadrature was used to solve the integrals.Sousa Jr and Muniz [4] pre-
sented a numerical procedure for analysis of steel, reinforced concrete or composite cross-section of arbitrary
polygonal shape, based on analytical evaluation of cross-section properties. The uniaxial stress–strain relationship
was supposed to be of a piecewise polynomial type, and the subdivision of the section into subregions was per-
formed by means of a contour algorithm. In a similar way, some researchers sought evaluations of the deformed
state of the section for the required condition [5]. For example, Liu et al. [6] made variations in the position of
the neutral axis, simultaneously considering the limiting strain of some of the cross-section component materials
to analyse specific interaction curves. These studies focused in generically sections shapes or determined types, as
made by Li et al. [7], that analysed rectangular tubular and welded-I cross-sections using a quasi-Newton method
[8].

For the evaluation of the cross-sectional behavior after the critical point of the moment-curvature relationship,
Chiorean [9] presented an incremental-iterative procedure based on arc-length approach. Thus, the active bending
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Foz do Iguaçu, Brazil, November 21-25, 2022



A fem-based approach coupled to path-following strategies for non-linear anaylis of steel-concrete cross-sections

moment was updated at each iterative cycle, making it possible to evaluate the cross-section with strains greater
than those responsible for the critical bending moment. This approach was later applied in a brief study of a steel
I section totally encased in concrete considering the AISC LRFD [10] and ECCS [11] residual stress models [12].

More recently, Lemes et al. [13, 14] used the strain compatibility method (SCM) to assess the strength and also
axial and bending stiffness within the context of concentrated plasticity-based formulations. The standard Newton-
Raphson method was coupled to the SCM where the constitutive relationships of the materials were explicitly
used. In the these researches, a simplified incremental-iterative strategy was adopted, which was interrupted when
finding the moment limit point at the moment-curvature relationship. In other words, the softening parts of these
relationships were not obtained. Once using constitutive relations disregarding the materials strain-softening effect,
such a softening stretch is not considered.

In this sense, Caldas [15] pointed out that a simple solution to obtain the stretches with negative rigidity of the
moment-curvature relationship could be found using an increment strategy based on deformations. Chiorean [16]
presented a formulation for the complete construction of the moment-curvature diagrams that were determined
such that axial force and bending moment ratio was kept constant. A strain-driven algorithm was developed and
implemented, and the solution of the nonlinear equilibrium equations was controlled by the assumed strain values
in the most compressed point and by solving just two coupled nonlinear equations. The purpose of this work is to
use path-following methods to pass through critical points in the moment-curvature relationship of cross-sections
composed of steel and concrete. For corrections and control in the load increment, adaptations were made in the
Generalized Stiffness Parameter (GSP) [17] to the variables present in the problem addressed here. During the
iterative process, the minimum residual displacement norm strategy [18] was adapted.

2 Materials constitutive relationships

The behavior of the steel will be described through the trilinear constitutive model [12] depicted in Fig. 1.
It should be emphasized that the possibility of the material hardening is considered. One characteristic of steel
section material is that its tensile behavior equals that of compression.

For steel reinforcement, a bilinear constitutive relationship was considered according [12]. This model was
adopted for both tension and compression, in which the strain-hardening effect was considered only in tension.

Compressed concrete is described by the nonlinear relation [12] and when tensioned, the bilinear constitutive
model, with the maximum tensile strain limited to 0.07% [19], was used.

Figure 1. Constitutive relationships adopted for the materials

The residual stress models used in this research are defined by design codes. The ECCS [11] uses the residual
stress model based on Huber and Beedle’s [20] proposition. AISC LRFD [10] follows the Galambos and Ketter
[21] proposal.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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3 Cross-sectional analysis

The SCM is an Euler-Bernoulli Theory-based approach for the evaluation of compact cross-sections. Under
external loads, a structure will gradually deform until it reaches equilibrium [10]. Once the internal and external
forces are equal, the deformation stops, and, at the cross-section level, is studied by SCM [13].

3.1 Degrees of freedom

The discretization shown in Figure 5 is used to find the axial strain, εi , in plastic centroid (PC) of each
cross-sectional sub-area. Thus, through the material constitutive relationship, it is possible to obtain the respective
stress, σi. In Figure 5, the deformed shape of an I section is illustrated for a combination of normal efforts (axial
force and bending moment). Thus, the axial strain in the ith sub-area can be written as follows:

εi = ε0 +Φyi + εri (1)

where yi is the distance between the plastic centroids of the analyzed sub-area and the cross section, ε0 is the
axial strain of the PC section, εr is the strain due to residual stress, and Φ is its curvature. The variables ε0 and Φ
are the strain vector components.

ith sub− area

yi
Ai

Φ

ε0

εi

PC
PC

Initial shape Deformed shape

Figure 2. Linear strain field in major axis bending

The internal force vector for this case is expressed by the classical integrations (summations) and considering
the cross-sectional discretization, as follows:

fint =

 Nint =

∫
A

σ [ε (ε0,Φ)] dA

Mint =

∫
A

σ [ε (ε0,Φ)] ydA

 =


Nint =

nsub∑
i=1

σi [εi (ε0,Φ)]Ai

Mint =

nsub∑
i=1

σi [εi (ε0,Φ)] yiAi

 (2)

where Nint and Mint are the internal forces.

3.2 Constitutive matrix

The cross-section discretization shown in Figure 2 is very efficient [22] in describing the strain distribution.
It is done to capture the axial strain in the center of each sub-area, and then (through the material constitutive
relations) to obtain the respective stresses. Thus, the axial stress in ith sub-area can be obtained by the Eq.(1).

The cross-sectional deformed shape is calculated by the equilibrium of the external, fext, and internal, fint,
forces that can be numerically expressed by the following nonlinear equation:

F (X) = fext − fint ∼= 0 (3)

with F and X being the equilibrium force vector and strain vector, respectively. All parameters are dependent
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of the number of degrees of freedom of the section. Applying the expansion in Taylor series in Eq.(3), results in
the following set of nonlinear equations:

F(X) = F′(X)∆X (4)

where F′ is the Jacobian matrix of the nonlinear problem, that is described as follow:

F′(X) = −∂F(X)
∂X

=

 f11 =
∂Nint

∂ε0
f12 =

∂Nint

∂Φ

f21 =
∂Mint

∂ε0
f22 =

∂Mint

∂Φ

 (5)

3.3 Generalized stiffness parameters

When the cross-section equilibrium is reached, the external and internal forces vectors are numerically equal.
Thus, the deformed shape of the cross-section, described by strain vector X, is found. For this condition, the
parameters of cross-sectional stiffness are determined. In turn, the axial strains in the sub-areas are used to calculate
the Jacobian matrix at this point, where: f11 f12

f21 f22

 ∆ε

∆Φ

 =

 ∆N

∆M

 (6)

Using the stiffness concept, the differentiation of the force by its respective strain defines the stiffness of the
analysed degree of freedom. As the problem has two degrees of freedom, to obtain the axial stiffness the bending
moment is kept constant (∆M = 0). Therefore, the system resolution to obtain the ratio of the force increment
∆N by the axial strain increment ∆ε defines the section axial stiffness EAT . The same process can be adapted to
obtain flexural stiffness EIT . The calculated stiffnesses are presented below:

EAT =
∆N

∆ε

∣∣∣∣
∆M=0

= f11 −
f12f21
f22

(7)

EIT =
∆M

∆Φ

∣∣∣∣
∆N=0

= f22 −
f12f21
f11

(8)

where fij are the constitutive matrix terms defined by Eq. (5)

4 Path-following strategies

In finite element context, the nonlinear static solver consists of obtaining the equilibrium between internal
and external forces for each load increment as described in Eq. (3) and modified as follows [14]:

fext − fint ∼= 0 → (ffix + λfr)︸ ︷︷ ︸
fext

−fint ∼= 0 (9)

where ffix is fixed forces vector, λ is the bending moment increment factor and fr is the reference load vector.
To solve the nonlinear problem, load increment and iteration strategies are used.
The initial increase of the load parameter, ∆λ0, is automatically determined by the modified technique of

generalized displacement [23]. Thus, ∆λ0 is calculated as:

∆λ0 = ±∆λ0
1

√√√√∣∣∣∣∣
(
1δXT

r

) (
1δXr

)(
tδXT

r

)
(δXr)

∣∣∣∣∣ = ±∆λ0
1

√
|GSP | (10)

where index 1 indicates the ∆λ0 and δXr (tangential strains) values obtained in the first loading step, and
GSP represents the Generalized Stiffness Parameter.

In the traditional scheme of the Newton-Raphson method, the load parameter λ is kept constant throughout
the iterative process. Thus, the equilibrium path can be obtained until a limit point and/or a bifurcation point is
reached. The variation of λ during the iterative cycle enables the full equilibrium path to be traced. In this work,
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the minimum residual displacement norm strategy proposed by Chan [18] was used. In this strategy, the correction
of the load parameter δλk is given by the equation:

δλk = −
(
δXk

r

)T
δXk

g(
δXk

r

)T
δXk

r

(11)

where δXk
g is the displacement vector correction obtained from the Newton-Raphson method application with

the conventional λ increment strategy, and δXk
r is the iterative displacement vector resulting from reference load

vector fr application.

5 Moment-curvature relationship

In this work, the standard Newton-Raphson method and continuation strategy were used to obtain the moment-
curvature relationship. For a fixed value of axial force, N, increments are given in the external bending moment,
M, until the ultimate strain of one of the materials is reached. The process of the moment-curvature relationship
assessment can be seen in Figure 3:

Equilibrium
path

X

λ

Constraint curve

tλ

tX

∆λ0

∆X0

∆λ1

∆X1

∆λ2

∆X2

δλ1

δλ2

δX1 δX2

Predictor

Corrector

Figure 3. Numerical strategy adopted for the iterative-incremental solution

Table 1 sequentially describes the nonlinear solver adopted for the cross-sectional problem considering ith
the axial strain of the ith subarea and εlim the material ultimate strain of the analysed subarea.
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Table 1. Flowchart of the moment-curvature relationship assessment

Algotithm: Nonlinear solver
1 Read geometric and material data of the cross-section
2 Obtain the reference nodal load vector, Fr

3 t = 0

4 t1 = t

5 Initial conditions: tX = 0 and tλ = 0

6 for each load increment do → INCREMENTAL PROCESS
7 t = t1 → Previous load step
8 t1 = t+ 1 → Current load step
9 Assemble the constitutive matrix: F’
10 Solve: tangent displacement vector: δXr = F’−1 Fr

11 if t1 = 1 then
12 ∆λ0 = (∆λ0)1

13 else
14 Define: ∆λ0(Eq.10)

15 end if
16 Evaluate the initial incremental strain vector: ∆X0 = ∆λ0δXr

17 Update variables in t1: t1λ =t λ+∆λ0andt1X =t X +∆X0

18 for k = 1, nmax do → ITERATIVE PROCESS
19 Evaluate the internal forces vector: t1f(k−1)

int

20 Evaluate the residual force vector: g(k−1) = (ffix +t1 λ(k−1)Fr)−t1 f(k−1)
int

21 if ς ≤ Tol then
22 Exit the iterative process and go to line 30
23 end if
24 Update the constitutive matrix F’
25 Update the load parameter correction, λk(Eq.11)

26 Evaluate the strain correction vector: δXk = δXk
g + δλkδXk

r

27 Update the load parameter and the strain vector:
∆λk = ∆λ(k−1) + δλkand∆Xk = ∆X(k−1) + δXk

g + δλkδXk
r

t1λk =t λ+∆λkandt1Xk =t X +∆Xk

28 end for
29 Update the variables (strains and internal forces vector)
30 if (εi > εlim)then
31 Stop
32 end if
33 end for

6 Numerical applications

7 Conclusions

Acknowledgements. The authors would like to thank CAPES and CNPq (Federal Research Agencies), Fapemig
(Minas Gerais State Research Agency), UFLA and UFOP for their support during the development of this work.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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[2] Í. J. M. Lemes, A. R. D. Silva, R. A. M. Silveira, and P. A. S. Rocha. Determinação da capacidade resistente
de elementos estruturais mistos através do método da rótula plástica refinado. Revista Internacional de Métodos
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