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Abstract. Besides the finite element method (FEM), a number of numerical methods have been proposed in the
literature for the analysis of geometrically exact shear deformable beams, developed to improve the convergence
properties and the shear-locking behaviour exhibited by the finite element method. This paper illustrates some pre-
liminary results obtained with the application of a meshfree method of the family of Smoothed Point Interpolation
Methods (SPIMs) to the analysis of a geometrically exact shear deformable beam. Among the possibilities of shape
functions creation, the so-called edge-based approach with polynomial basis is extended for this one-dimensional
model. A classic example is solved numerically to validate the code. The resulting nonlinear system of equations
is treated by a Newton-like algorithm with load control.
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1 Introduction

The smoothed point interpolation methods are from a family of meshfree methods were the concepts of
smoothing domains and weakened-weak W2 formulation are introduced. Among the possibilities of domain tes-
sellations in these methods, are the node-based smoothed point interpolation method (NS-PIM) proposed by Liu
et al. [1], the cell-based smoothed point interpolation method (CS-PIM) introduced in the work of Zhang and Liu
[2] and finally the edge-based smoothed point interpolation method (ES-PIM) addressed in Liu and Zhang [3]. A
comprehensive discussion concerning to these methods can be found in Liu and Zhang [4]. The SPIMs emerged to
solve two and three dimensional problems, however applications for one dimensional problems are also available
in the literature, e.g. Liu [5], Du et al. [6], He et al. [7] and Santos et al. [8].

In this paper the ES-PIM will be investigated on the analysis of the geometrically exact beam model proposed
by Simo [9] and Simo and Vu-Quoc [10]. The ES-PIM simulations were performed using the MATLAB

®
software.

The code was validated and the numerical results were compared with the ones available in the relevant literature.

2 Geometrically exact beam

The geometrically exact model adopted in this paper is characterised by a three-dimensional motion, where
displacements and rotations are allowed without any restriction in magnitude Simo [9], Simo and Vu-Quoc [10].
The beam is a three-dimensional object characterised by a family of cross sections and a line of centroids. In
the current configuration the line of centroids ϕ0(S, t) is a curve defined on the open interval I , while the cross-
sections are characterised by a unit normal vector field n̄(S, t), as shown in the following:

S ∈ I → ϕ0(S, t) ∈ R3, S ∈ I → n̄(S, t) ∈ R3 (1)

The motion of the beam model is based on the following assumptions: the cross-sections remain plane in the
current (spatial) configuration (in other words, warping effects are not allowed) and the cross-sections do not
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experience any change in shape or size. For simplicity, the model will be restricted to uniform cross-sections, and
a straight line of centroids in the reference configuration. In order to express the equation of motion of the beam,
it is often useful to introduce an orthonormal frame at each point of the curve S → ϕ0(S, t) which will be referred
to as moving or intrinsic frame: {t̄1(S, t), t̄2(S, t), n̄(S, t)}. Initially, any cross-section of the beam belongs to a
plane normal to Ē3. During the motion, the cross-sections exhibit a rigid body motion, which can be expressed in
terms of an orthogonal transformation S → R(S, t) ∈ SO(3)1 such that :

t̄I(S, t) = R(S, t)ĒI (2)

where R(S, t) maps the reference frame into the moving frame. In this context the moving frame is the reference
frame rotated. Using the assumptions described previously, the deformation of the beam is characterised by the
motion of the line of centroids and the rotation of the cross-sections, as illustrated in section 2.
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Figure 1

Although the original formulation of the model accounts for dynamic effects (see Simo [9]), in this paper,
attention is devoted to the static case. One can demonstrate that the beam spatial stress measures, f̄ and m̄, must
satisfy the following linear and angular momentum balance equations Simo [9]:

∂f̄

∂S
+ q̄f̄ = 0,

∂m̄

∂S
+
∂ϕ0

∂S
× f̄ + q̄m̄ = 0 S ∈ I (3)

where q̄f̄ is the (applied) force per unit of reference arc length and q̄m̄ is the (applied) moment per unit of reference
arc length. It is often more convenient to use a material form of the beam model in applications. Material stress
measures belong to the reference configuration, and can be obtained from the spatial measures through a pull-back
operation, performed with the rotation tensorR(S, t):

N̄(S, t) = RT (S, t)f̄(S, t), M̄(S, t) = RT (S, t)m̄(S, t) (4)

In this paper, aiming a simple approach, the adopted constitutive model is limited to the elastic case. However,
this is not a limitation of the beam model, rather a simplification adopted in the context of this work. In addition

1This is the special orthogonal Lie group. See more in Geradin and Cardona [11].
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to that, the material is assumed to be homogeneous and isotropic. For a particular case where the beam axis
coincides with the cross-sectional centroids and the cross-sectional axis is parallel to the principal axis of inertia,
the constitutive tensor C is constant and diagonal. Therefore, the material version of the constitutive law can be
represented by:

 N̄(S, t)

M̄(S, t)

 = C

 Γ̄(S, t)

Ω̄(S, t)

 (5)

where Γ̄(S, t) and Ω̄(S, t) are the material strain measures. The first one takes into account axial and shear
deformations, while the second one takes into account bending and torsional deformations Simo [9], Geradin and
Cardona [11]. These strain measures posses the following representation:

Γ̄(S, t) ≡ RT ∂ϕ0(S, t)

∂S
− Ē3(S), Ω̄(S, t) ≡ axial

[
RT (S, t)

∂R(S, t)

∂S

]
(6)

in equation above Ω̄(S, t) is the axial vector associated with the skew-symmetric tensor Ω(S, t) (see Simo and
Vu-Quoc [10], Geradin and Cardona [11], Gori [14]).

3 Edge-based smoothed point interpolation method (ES-PIM)

In the smoothed point interpolation methods the concepts of smoothing domains and weakened-weak W2

form are introduced. Such smoothing domains are used to transform the gradients of the field variables into
boundary integrals using the Green’s theorem (see Liu and Zhang [4]) for further details). In this work, each
smoothing domain DS

k is associated with an edge and its end points (nodes) coincide with the integration points
used to perform the boundary integration over each smoothing domain.

3.1 Support nodes selection

In SPIMs a certain number of nodes is selected to compose the support domain Sd for each point of interest.
In two-dimensions, the so-called T-schemes are usually employed for this task, where background triangular cells
are used Liu and Zhang [4], as shown in Fig. 1b. In the present one-dimensional edge-based approach, the edge,
background cells and smoothing domains occupy the same space as depicted in Fig. 2a. In order to evaluate the
support nodes used to construct the shape functions at each integration point, two different strategies are proposed
in this paper. With the so-called L2-scheme, the support domain at each integration point is constituted by the two
nodes of the smoothing domain where the point belongs to (Fig. 2b). In the second approach, referred to as L3/2-
scheme, for each integration point, the support domain is composed by the two nodes of the smoothing domain
where the point belongs to, and an additional node from the neighbour smoothing domain, as illustrated in Fig. 2c.
For integration points on the boundary of the model, the L3/2-scheme degenerates to the L2-scheme. In order to
approximate the “field variables”, it is necessary to compute the shape functions at the centre of the smoothing
domains, in this case the support domain at the centre will be built as the union of the left and right supports of the
same smoothing domain (see Fig. 2b and Fig. 2c).

3.2 Weakened-weak form

In SPIMs applications, the starting point to develop the weakened-weak formulation can be the weak form.
Let us consider an arbitrary admissible variation related to displacements and rotations with the form η̄(S, t) ≡
(η̄0(S, t), θ̄(S, t)) ∈ TϕC (see Simo and Vu-Quoc [10]). Starting from the linear and angular momentum balance
equations shown in eq. (3), and using the admissible variations as test functions in a weighted residual procedure,
a functional G(ϕ, η̄) can be introduced, in its material version [10]:
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G(ϕ, η̄) :=

∫
[0,L]

{
N̄ ·RT

[
∂η̄0

∂S
− θ̄ × ∂ϕ0

∂S

]
+ M̄ ·RT ∂θ̄

∂S

}
dS

−
∫

[0,L]

(q̄f̄ · η̄0 + q̄m̄ · θ̄) dS

(7)

The weak form of the beam problem consists then into find a configuration such that G = 0,∀η̄ ∈ TϕC. In order
to obtain a solution algorithm for the geometrically nonlinear beam problem, the weak form must be linearised.
The linearisation procedure of the functional G(ϕ, η̄) is achieved by considering its tangent approximation at the
configuration ϕ = ϕ̂ (see Wriggers [12, p. 96]) as follows2:

L[G(ϕ̂, η̄)] = G(ϕ̂, η̄) +DG(ϕ̂, η̄) ·∆ϕ (8)

For a detailed explanation regarding the linearisation procedure the reader is referred to Simo and Vu-Quoc
[10], Geradin and Cardona [11], Gori [14]. With above equation, it is possible to move towards a suitable nu-
merical method that makes use of a weak form, for instance, the finite element method. In SPIMs applications the
weakened-weak form is obtained by considering that the strain measures, Γ̄(S, t) and Ω̄(S, t), are constants within
each smoothing domainDS

k . This is achieved by replacing the strain measures of each smoothing domain by their
smoothed versions (see Liu and Zhang [4]). In the current beam model, the strain measures Γ̄(S, t) and Ω̄(S, t)

are replaced by ˜̄Γ(xk) and ˜̄Ω(xk), as shown in the following:

˜̄Γ(xk) =
RT (xk)

`k

[
ϕ0(ξ) n

(k)
S (ξ)

]∣∣∣∣∣
Γk

− E3(S), ˜̄Ω(xk) = axial

[
RT (xk)

`k

[
R(ξ) n

(k)
S (ξ)

]∣∣∣∣∣
Γk

]
(9)

2For a broader and more formal overview regarded to the linearisation procedure, see Marsden and Hughes [13].
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with ˜̄Ω(xk) = axial[Ω̃(xk)], where xk is the centre of the smoothing domain k, nkS represents the normal outward
unit vector, however it takes +1 or−1 in the one-dimensional case, Γk represents the smoothing domain boundary,
and `k is the smoothing domain length. After performing the smoothing operation above, the domain integrals
appearing in eq. (8) (see Simo and Vu-Quoc [10]) can be transformed in a summation over the NS smoothing
domains composing the discrete model, resulting in the following weakened-weak form:

L̃[G(ϕ, η̄)] = G̃(ϕ̂, η̄) + D̃G(ϕ̂, η̄) ·∆ϕ (10)

4 Numerical simulations

In what follows, the numerical results of a classic example are illustrated for the L2 and L3/2 schemes. The
linear FEM with a reduced integration was also simulated, however, the obtained results were identical to the
L2-scheme results, therefore they were omitted. The simulations were performed by a Newton-like algorithm with
load control. The present example is a right-angle hinged frame3 subjected to a fixed load or a follower load. The
same input data presented in Simo and Vu-Quoc [10] are adopted in this work. Each component of the frame is
discretised with 5 smoothing domains.
Problem data: the frame is characterised by each component having L = 120 mm with a point load placed at the
distance a = (1/5)L, as shown in Figure 3. The following geometric and material information were adopted in
the simulations:

A = 6 mm2 I1 = 2 mm4

A1 = 6 mm2 I2 = 2 mm4 E = 7 200 000 N/mm2

A2 = 6 mm2 Jt = 4 mm4 G = 2 770 000 N/mm2

(11)

L

a

L

y

P

z

Figure 3. Hinged right-angle frame under a force load

During the simulations, the load was incremented until the frame reached the buckling load. The L2 and
L3/2 schemes were analysed with a fixed and a follower load starting from the same magnitude P = 1000 N. The
deformed shapes due to the fixed load are shown in Fig. 4a and Fig. 4b, while in Fig. 4c and Fig. 4d the deformation
due to the follower load case are illustrated. With respect to the buckling load, the L2 and L3/2 schemes exhibited
a similar outcome, as can be observe in Fig. 4e and Fig. 4f, while in Table 1 the estimated values for the buckling
load are illustrated. The analytical solution of the buckling load for a fixed load is available in Lee et al. [15].
Considering an elastic frame, the expected value of the buckling load is P = 18.552(EI/L2) = 18 552 N. The
results presented in Table 1 agree with this value, as the errors of L2 and L3/2 schemes are inferior to 6% when
compared with the expected solution.

3Some authors refer it as the Lee’s frame, due to the work of Lee et al. [15] where this frame was first studied and analytical solutions
provided.
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The L3/2 results showed a softer behaviour than the L2-scheme. In other words, the buckling load achieved
for the L2-scheme simulation is bigger than the L3/2-scheme outcome. Performing the same simulations with the
linear FEM, the same results obtained for the L2-scheme are recovered for both load types.
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(b) L3/2-scheme (fixed load)
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(c) L2-scheme (follower load)
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(d) L3/2-scheme (follower load)
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(e) L2-scheme (load-displacement diagram)
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(f) L3/2-scheme (load-displacement diagram)

Figure 4. Numerical results

Table 1. Load buckling values in Newtons

Load L2 scheme Simo (1986) ∆ [%] L3/2 Scheme Simo (1986) ∆ [%]

fixed 19550 18532 5.49 17880 18532 -3.52

follower 39250 35447 10.73 33580 35447 -5.27
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5 Conclusions

This paper presented a preliminary investigation on the application of SPIM meshfree models to the analysis
of a geometrically exact beam. The numerical simulations pointed out that depending on the number of support
nodes used to construct the shape functions, different behaviours were identified. Using the L2-scheme, the same
solution of the linear FEM with reduced integration was recovered, while using the L3/2-scheme a softer solution
was obtained. This same behaviour was observed in Santos et al. [8] referring to the lower and upper bound
solutions of the linear Timoshenko beam. Moreover, different from FEM implementations, the proposed meshfree
approach does not require a numerical integration along the beam, neither to evaluate the jacobian necessary in
isoparametric FEM formulations. Finally, the proposed SPIMs exhibited a locking free behaviour, i.e. no additional
treatment was necessary to avoid the spurious stiffer behaviour that commonly occurs in FEM simulations of shear-
deformable beams.
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Foz do Iguaçu, Brazil, November 21-25, 2022


	Introduction
	Geometrically exact beam
	Edge-based smoothed point interpolation method (ES-PIM)
	Support nodes selection
	Weakened-weak form

	Numerical simulations
	Conclusions

