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Av. Getúlio Vargas, 333, Quitandinha, 25651-076, Petrópolis/RJ, Brazil
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Abstract. In this work, it is performed a numerical analysis of a totaly discrete formulation for the transient heat
conduction problem. This formulation is constructed by using a discontinuous hybrid stabilized finite element
method in space combined with a high order finite difference approximation (Crank-Nicolson method) for the
temporal dependency. The computational methodology used to solve the formulation is a static condensation
scheme resulting in a global system related only with the Lagrange multiplier associated with the trace of the
temperature at the edges of the elements and local problems that are solved for the temperature. In doing so, the
number of the degrees of freedom of the global system is reduced. Numerical results are presented confirming the
optimal rates of convergence obtained in the numerical analysis.
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1 Introduction

Transient heat conduction problems are commonly represented by parabolic differential equations and, in the
finite element context, the standard approach is the classical Galerkin method usually defined so that the space
approximation is continuous between elements, Thomée [1], Fernandes et al. [2]. However, the application of
that method together with finite difference time discretization may give rise to spurious oscillations at the initial
instants of time, as shown in Harari [3].

Based on the ideas of Arruda et al. [4] for the elliptic problem, a hybrid stabilized finite element formulation
for the space discretization combined with a Crank-Nicolson scheme is proposed here in order to eliminate the
spurious oscillations, consisting of a generalization of the discontinuous Galerkin (DG) method by adding consis-
tent stabilization terms by introducing a Lagrange multiplier defined at the interfaces of the elements to impose the
continuity at the edges.

Hybrid DG methods, Rivière [5], have been developed to improve stability and reduce computational cost
comparing with DG methods used alone, Ewing et al. [6], Cockburn et al. [7], maintaining the good properties
of the DG methods as, for example, to satisfy constraints locally and allow flexibility for parallel solvers even
in mixed formulations. Some advantages of discontinuous interpolations can be seen in Karam-Filho and Loula
[8]. The inclusion of unknowns at the interfaces compensates the interelements discontinuity, Arnold et al. [9],
allowing the use of static condensation techniques, Lehrenfeld and Schöberl [10], simplifying the solution of the
resulting algebraic system.

Then, the method which is analysed in this work is the coupling of local problems where the solution for the
primal variable, the temperature, is obtained by a hybrid stabilized DG method, with a global problem that solves
for the Lagrange multiplier.

The implementation methodology to solve the resultant formulation uses a static condensation procedure
which consists in eliminating the primal variable resulting in a global system relating only the Lagrange multiplier
and, once obtained this variable, the temperatures are obtained by solving recovered local systems element by
element, reducing in this way the computational cost as in Brezzi et al. [11].

A theoretical numerical analysis of this method is developed in terms of stability and convergence, and
numerical results are presented confirming the theoretical results obtained.
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2 Model problem

Let Ω ⊂ R2 be an open domain with boundary ∂Ω, u the temperature, u0(x, y) is the specified initial
temperature, f ∈ L2(Ω) a source term, and the time t ∈ [0, T ], T > 0. Considering homogeneous Dirichlet
boundary conditions, transient heat diffusion problems may be given by the following parabolic linear problem.
Problem 2.1. Find the temperature u = u(x, y, t), such that

∂u

∂t
− div∇u = f in Ω× [0, T ], (1)

u(x, y, t) = 0 on ∂Ω× [0, T ]; u(x, y, 0) = u0(x, y) in Ω. (2)

3 Notations and definitions

Some notations and definitions will be necessary to construct the hybrid stabilized formulation and to develop

the numerical analysis. Let L2(Ω) =

{
v :

∫
Ω

|v|2dΩ <∞
}

, with its usual norm defined by the inner product and

represented by ‖ · ‖0,Ω = ‖ · ‖0 = ‖ · ‖=| · |0,Ω = | · |0. We consider spaces of functions mapping the time
interval (0, T ) to a normed space L2(Ω) equipped with the norm ‖ · ‖. Thus we define L2

(
0, T ;L2(Ω)

)
={

z : (0, T )→ L2(Ω) :

∫ T

0

‖z(t)‖2dt <∞
}

, Rivière [5]. The finite element partition is given by Th = {K} :=

{ union of all elementsK}. Moreover, Eh is the set of all edges e of the elementsK, E0
h is the set of inner edges and

E∂h = Eh ∩ ∂Ω is the set of border edges of Ω. Let [[·]] and {·} be the jump and the average operators, respectively,
defined as in the DG methods, Rivière [5]. Then, given the elements K1,K2 ∈ Th that share the side e, we define
n1,n2 as the unit normal vectors at the edge e of elements K1,K2, respectively, such that for a scalar function ϕ:
[[ϕ]] = ϕ1n1 + ϕ2n2 on e ∈ E0

h ; [[ϕ]] = ϕn on e ∈ E∂h and {ϕ} = 1
2 (ϕ1 + ϕ2) on e ∈ E0

h ; {ϕ} = ϕ on e ∈ E∂h .
Let the broken space, Rivière [5], of finite dimension (in the spatial variable) for the temperature, be given as
V kh = {vh ∈ L2(Ω) : vh|K ∈ Qk(K),∀K ∈ Th}, with Qk(K) the space of polynomial functions of order less or
equal to k in each variable (quadrilateral elements). For the Lagrange multiplier µh that will be introduced in the
stabilized formulation, define the space of discontinuous interpolation functions M l

h = {µh ∈ L2(Eh) : µh|e =
pl(e),∀e ∈ E0

h, µh|e = 0,∀e ∈ E∂h}, where pl(e) is the space of polynomial functions of order equal or greater
than l in each edge e. Let us define the following seminorms which will be necessary to the numerical analysis
presented later:

|v|20,K :=

∫
K
|v|2dx; |v|21,K :=

∫
K
|∇v|2dx; |v|22,K :=

∫
K
|∆v|2dx; (3)

|v|20,h :=
∑
K∈Th

|v|20,K; |v|21,h :=
∑
K∈Th

|v|21,K; (4)

|v|2∗ :=
∑
e∈Eh

h−1

∫
e

|[[v]]|2ds; |µ|2# :=
∑
e∈E0h

h−1

∫
e

|µ|2ds; (5)

as well as the following norms that have been defined in Arnold et al. [9] and Rivière [5]:

‖v‖2DG := |v|21,h + |v|2∗; |||v|||2DG := ‖v‖2DG +
∑
K∈Th

h2|v|22,k, ∀ [v, µ] ∈ V kh ×M l
h. (6)

It will be also considered the following norm, previously defined in Arruda et al. [4]:

‖[v, µ]‖2GC := ‖v‖2DG + |µ− {v}|2#, ∀ [v, µ] ∈ V kh ×M l
h . (7)

Being the finite dimensional product space V (h) × M(h), where V (h) = V kh + H2(Ω) ⊂ H2(Th) and
M(h) = M l

h + L2(E0
h), we will introduce here the alternative norm:
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|||[vh, µh]|||2GC := ‖[vh, µh]‖2GC +
∑
K∈Th

h2|vh|22,K, ∀[vh, µh] ∈ V (h)×M(h) (8)

which can also be rewritten using the definitions (3) as

|||[vh, µh]|||2GC := |||vh|||2DG + |µh − {vh}|2#, ∀ [vh, µh] ∈ V (h)×M(h). (9)

Note that (7) and (9) are equivalent since, for 0 < M1 ≤ 1 and M2 <∞:

M2|||[vh, µh]|||GC ≤ ‖[vh, µh]‖GC ≤M1|||[vh, µh]|||GC , ∀ [vh, µh] ∈ Vh ×Mh. (10)

4 Totally discrete formulation

Based on the ideas found in Arruda et al. [4] for the eliptic problem, a semidiscrete hybrid stabilized for-
mulation for the parabolic problem was proposed and analyzed in Barreiro [12]. Here a new totally discretized
method where the hybrid stabilized formulation is used to the space variable combined with a Crank-Nicolson
scheme to the time variable will be introduced and analysed for Problem (1–2). This formulation avoid spuri-
ous oscilations that arise at small initial times during the simulations when, for example, the continuous Galerkin
method is applied in space. Here, a Lagrange multiplier, λh, is introduced which is identified with the trace of the
primal temperature variable uh; that is: λh = uh|e in each edge e ∈ Eh. The boundary condition u = 0 on ∂Ω is
weakly imposed by the Nitsche approach usually adopted in the DG methods. A residual term is added making the
formulation symmetric and adjoint consistent. It is also added a term for the stabilization of both variables: uh and
the Lagrange multiplier λh. The Crank-Nicolson scheme is a kind of ”arithmetic mean” between the explicit and
implicit schemes, giving second-order convergence in time. Here the semidiscrete formulation of Barreiro [12] is
discretized in a symmetric fashion around the point tn+ 1

2 =
(
n+ 1

2

)
∆t = tn+1+tn

2 .
Let unh = uh(tn), n = 0, · · · , N − 1, ∆t = T/N with N being the number of iterations and T the total time,

we generate the totally discrete hybrid stabilized formulation for the Problem (1–2):
Problem 4.1. Find the pair

[
un+1
h , λn+1

h

]
∈ V kh ×M l

h, ∀[vh, µh] ∈ V kh ×M l
h, ∀n ≥ 0, such that

∑
K∈Th

1

∆t

(
un+1
h , vh

)
K +

1

2
a
([
un+1
h , λn+1

h

]
, [vh, µh]

)
=
∑
K∈Th

1

∆t
(unh, vh)K −

1

2
a ([unh, λ

n
h] , [vh, µh]) + F (vh), (11)

For m = n+ 1 or m = n, a([·, ·], [·, ·]) and F (·) can be defined as:

a([umh , λ
m
h ], [vh, µh]) =

∑
K∈Th

∫
K
∇umh · ∇vh dx −

∫
Eh

({∇vh} · [[umh ]] + {∇umh } · [[vh]]) ds

−
∫
E0h

([[∇vh]]({umh } − λmh ) + [[∇umh ]]({vh} − µh) ds+

∫
Eh

β0

2h
[[vh]] · [[umh ]] ds

+

∫
Eh

2β0

h
({umh } − λmh )({vh} − µh) ds, (12)

F (vh) =
∑
K∈Eh

∫
K
fn+ 1

2 vh dx =
∑
K∈Eh

∫
K

1

2

(
fn+1 + fn

)
vh dx. (13)

For (12), coercivity and continuity have been obtained by Arruda et al. [4] to the elliptic problem. With the
above considerations, we will obtain, in what follows, the stability conditions and a priori error estimates.
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Lemma 4.1. (Stability). For Problem (1–2) there is a constant C independent of the mesh parameter h and of ∆t,
such that, ∀m > 0,

‖umh ‖20,h + ∆tC
m∑
n=1

||| [unh, λnh] |||2GC

≤ ∆tC
[
C2
b

4

m∑
n=1

|||
[
un−1
h , λn−1

h

]
|||2GC +

M2
1

2

m∑
n=1

‖fn + fn+1‖20,h

]
+ CM2

1 ‖u0‖20,h. (14)

Proof. Taking vh = un+1
h , µh = λn+1

h and multiplying by ∆t the equation (11); using the Cauchy-Schwarz
inequality, the coercivity and continuity of a([·, ·], [·, ·]), using the equivalence of the norms (10), applying Young’s
inequality, adding all the elements from n = 0 to n = m− 1 and knowing that u0

h = u0, we have (14), ∀ m ≥ 1,

with C = CsM2

4 , Cs = min

{(
1− 5C2

β0

)
, β0

4 − 5C2

4 , β0

}
, where C is the constant of the trace inequality, with

Cb = max {1, C, 2β0}, γb = Cp ‖f‖ and Cp is the Poincaré inequality constant.

Theorem 4.1. (Error Estimates). Considering that the exact solution u(t) of Problem (1–2) satisfies u(t) ∈
H1 (Th) , ∂

2u(t)
∂t2 ∈ L2(Ω) ∀t ∈ [0, T ], there are constants C1 =

(
1

24Cs

)1/2

, C2 =
(

6
Cs

)1/2

, C3 =
(

3Cb

Cs

)1/2

,

C4 =
(

1
12C̃sCs

)1/2

, C5 =
(

12
C̃sCs

)1/2

, C6 =
(
Cs

C̃s

)1/2

, C7 =
(

6Cb

CsC̃s

)1/2

and C̃s = M2Cs, with Cs the
coercivity constant and Cb the continuity constant, independents of h and ∆t, ∀m > 0, such that

‖emu ‖0,h ≤ ∆t2C4

(∫ tm

0

∥∥∥∥∂3un

∂t3

∥∥∥∥2

0,h

dt

) 1
2

+ C5h
k+1

(
1

∆t

∫ tm

0

∣∣∣∣∂un∂t
∣∣∣∣2
k+1,Ω

dt

) 1
2

− C6

(
m−1∑
n=1

||| [enu, enλ] |||2GC

) 1
2

+ C7

(
m∑
n=2

|||
[
en−1
u , en−1

λ

]
|||2GC

) 1
2

; (15)

(
Cs

m∑
n=1

∥∥[un+1 − un+1
h , λn+1 − λn+1

h

]∥∥2

GC

)1/2

≤ C1∆t2

(∫ tm

0

∥∥∥∥∂3un

∂t3

∥∥∥∥2

0,h

dt

)1/2

+ C2h
k+1

(
1

∆t

∫ tm

0

∣∣∣∣∂un∂t
∣∣∣∣2
k+1,Ω

dt

)1/2

+ C3

(
m∑
n=1

|||
[
en−1
u , en−1

λ

]
|||2GC

)1/2

, (16)

with eu = uh(t) − ũh(t) and eλ = λh(t)− λ̃h(t) where ũ and λ̃ the elliptic projections of u and λ, respectively,
which define ũh(t) and λ̃h(t) as u(t)−uh(t) = u(t)− ũh(t)+ ũh(t)−uh(t) = ρu(t)−eu(t) and λ(t)−λh(t) =
λ(t)− λ̃h(t) + λ̃h(t)− λh(t) = ρλ(t)− eλ(t). It is used un = u(tn), λn = λ(tn), ũn = ũ(tn) and λ̃n = λ̃(tn).

Proof. From the consistecy of (4.1) and using the elliptic projection defined, we arrive at

∑
K∈Th

(
en+1
u − enu

∆t
, vh

)
K

+
1

2
a
([
en+1
u , en+1

λ

]
, [vh, µh]

)
+

1

2
a ([enu, e

n
λ] , [vh, µh])

=
∑
K∈Th

(
∂un+ 1

2

∂t
− un+1 − un

∆t
, vh

)
K

+
∑
K∈Th

(
ρn+1
u − ρnu

∆t
, vh

)
K
. (17)

Taking vh = en+1
u and µh = en+1

λ and by using the coercivity and the continuity of a ([·, ·], [·, ·]), defining θn+ 1
2 =

∂un+1

∂t
− (un+1 − un)

∆t
, using Cauchy-Schwarz inequality, knowing that

∥∥en+1
u

∥∥
0,h
≤
∥∥[en+1

u , en+1
λ

]∥∥
GC

and
applying the equivalence of the norms (10) we obtain
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1

2∆t

(
‖en+1
u ‖20,h − ‖enu‖20,h

)
+
Cs
4
|||
[
en+1
u , en+1

λ

]
|||2GC

≤ 3

Cs

(
‖θn+ 1

2 ‖20,h +

∥∥∥∥ρn+1
u − ρnu

∆t

∥∥∥∥2

0,h

)
+

3Cb
2Cs
||| [enu, enλ] |||2GC . (18)

Performing Taylor expansion for θn+ 1
2 and for ρn+1

u , using Cauchy-Schwarz inequality, adding all the terms from
n = 0 until n = m − 1, knowing that ‖e0

u‖ = 0, since u0
h = ũ0

h = u0 and using the result for the error estimate
‖u− uh‖0,Ω ≤ Chk+1|u|k+1,Ω, we obtain

1

∆t
‖emu ‖20,h +

Cs
2

m∑
n=1

||| [enu, enλ] |||2GC ≤
∆t4

24Cs

∫ tm

0

∥∥∥∥∂3un

∂t3

∥∥∥∥2

0,h

dt

+
6

∆tCs
h2(k+1)

∫ tm

0

∣∣∣∣∂un∂t
∣∣∣∣2
k+1,Ω

dt+
3Cb
Cs

m∑
n=1

|||
[
en−1
u , en−1

λ

]
|||2GC . (19)

From the above results, in what follows, the estimates of Theorem 4.1 will be obtained.
(i) Obtaining Estimate (15) (L2(Ω)-norm): From (19), the norms equivalence, being |||

[
e0
u, e

0
λ

]
|||GC = 0,

since u0
h = ũ0

h = u0 and λ0
h = λ̃0

h = λ0, we obtain

C̃s
2
‖emu ‖20,h ≤

∆t4

24Cs

∫ tm

0

∥∥∥∥∂3un

∂t3

∥∥∥∥2

0,h

dt +
6

∆tCs
h2(k+1)

∫ tm

0

∣∣∣∣∂un∂t
∣∣∣∣2
k+1,Ω

dt

− Cs
2

m−1∑
n=1

||| [enu, enλ] |||2GC +
3Cb
Cs

m∑
n=2

|||
[
en−1
u , en−1

λ

]
|||2GC . (20)

Taking the square root, we obtain (15).
(ii) Obtaining Estimate (16) (Energy norm): From the definition of ‖ · ‖GC , since

∥∥[ρn+1
u , ρn+1

λ

]∥∥2

GC
= 0,

adding from n = 0 to n = m− 1, using the equivalence of norms (10) and substituting (19), we get

Cs

m∑
n=1

∥∥[un+1 − un+1
h , λn+1 − λn+1

h

]∥∥2

GC
≤ Cs

m∑
n=1

|||
[
en+1
u , en+1

λ

]
|||2GC ≤

Cs
2

m∑
n=1

||| [enu, enλ] |||2GC

≤ ∆t4

24Cs

∫ tm

0

∥∥∥∥∂3un

∂t3

∥∥∥∥2

0,h

dt +
6

∆tCs
h2(k+1)

∫ tm

0

∣∣∣∣∂un∂t
∣∣∣∣2
k+1,Ω

dt+
3Cb
Cs

m∑
n=1

|||
[
en−1
u , en−1

λ

]
|||2GC . (21)

Taking the quare root of (21), we obtain (16).

5 Hybrid Solver

Since vh ∈ V kh is independently defined in each elementK ∈ Th and considering discontinuous interpolation,
we can eliminate the degrees of freedom relative to the primal variable and the totaly discrete formulation can be
solved by using a Static Condensation technique which consists, in this case, of solving the problem in two steps:
one that solves a global system defined in Eh, obtaining the Lagrange multipliers, by eliminating the temperature
variable, and the other one by solving for the temperature in each element K through local problems, once known
the Lagrange multipliers by the previous step. This is done as below where the local and the global systems have
been written in a form without the jumps and averages. Then, for all n = 1, ..., N with ∆t = T/N :
Local Problems: Find uh(t) ∈ V kh (K) = V kh

∣∣
K, such that, ∀ vh

∣∣
K ∈ V kh (K),
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∫
K

(
un+1
h − unh

∆t

)
vh dx +

∫
K

1

2

(
∇un+1

h +∇unh
)
· ∇vh dx−

∫
∂K

1

2

(
∇un+1

h +∇unh
)
· nK vh ds

+ ε

∫
∂K
∇vh · nK

(
un+1
h + unh

2
− λn+1

h + λnh
2

)
ds

+

∫
∂K

β0

h

(
un+1
h + unh

2
− λn+1

h + λnh
2

)
vh ds =

∫
K

(
fn+1 + fn

2

)
vh dx. (22)

Global Problem: Find λh(t) ∈M l
h, such that, ∀µh ∈M l

h,

∑
K∈Th

[ ∫
∂K

1

2

(
∇un+1

h +∇unh
)
· nK µh ds −

∫
∂K

β0

h

(
un+1
h + unh

2
− λn+1

h + λnh
2

)
µh ds

]
= 0. (23)

It can be noticed that one may adopt any order l of interpolation functions (continuous or discontinuous) for the
multiplier λn+1

h independently of the order k adopted to un+1
h . Here, only discontinuous interpolation functions

will be considered for the multiplier.

6 Numerical Results

In this section, it will be presented a study of h-convergence as well as of ∆t-convergence in the L2(Ω)-
norm for the hybrid stabilized parabolic method presented. The experiments have been performed for uniform
quadrilateral meshes defined in a bi-dimensional domain (2D) = [0, 1] × [0, 1]. It was considered the initial
condition u0 = 0 and the source term has been defined as f(x, y) = sen(πx)sen(πy), such that u(x, y, t) =[

1
2π2 − 1

2π2 e
−2π2t

]
sen(πx)sen(πy) is the exact solution for the problem. Same order interpolations have been

used for the temperature and the multiplier, considering Q1 − p1, linear, Q2 − p2, quadratic and Q3 − p3, cubic
elements. For all the cases it was considered ε = −1, giving a symmetric formulation. It has been set β0 = 10, 16
and 24 for the cases Q1 − p1, Q2 − p2 and Q3 − p3, respectively.
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Figure 1. h-convergence for uh,∇uh and λh in L2(Ω)-norm, for elementsQ1−p1,Q2−p2,Q3−p3, ∆t = 10−4.

Figure 1 presents the results of the h-convergece study performed, for unh , ∇unh and λnh , in the L2(Ω)-norm
considering ∆t = 10−4 and T = 0.2. It can be observed that in all the cases optimal convergence rates have been
obtained, that is: order O(hk+1) for uh, order O(hk) for ∇uh and order O(hk+0.5) for the multiplier (λh). A
∆t-convergence study can be seen in Figure 2, to which it has been fixed a 64 × 64 mesh. Optimal convergence
orders of O(∆t2) have been obtained.
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Figure 2. ∆t-convergence for uh, λh in L2(Ω)-norm, for elements Q1 − p1, Q2 − p2, Q3 − p3.

7 Conclusions

In this work, it has been done a numerical analysis for a hybrid stabilized finite element method, applied to
transient heat conduction problems combined with a Crank-Nicolson scheme dealing with the time dependency.
Stability and convergence estimates have been obtained independently of the mesh parameter h. Since discontinu-
ous interpolations used, it was possible to use a computational technique based on static condensation, reducing the
computational cost by the reduction in the number of degrees of freedom. The numerical experiments confirmed
the orders of convergence obtained by the analysis and it was evidenced the role of the stabilization β0 parameter,
since the solutions have been obtained here free of spurious oscillations even for very small ∆t’s.
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