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Abstract. This work addresses the the parametric optimization of an off-road car suspension system. The aim is
to find a compromise between comfort and safety while respecting functional constraints such as maximum de-
flections for the suspension and the tires, as well as the tendency of oversteering on cornering. The vertical vehicle
dynamic is used to evaluate both the comfort and safety criteria for different operational conditions: uniform recti-
linear movement; braking; curves; and longitudinal acceleration. Tires were subjected to base excitation, obtained
from the Power Spectral Density (PSD) of the road profile. The tendency to oversteer on cornering was measured
by comparing the frontal and rear torsional stiffness. The Finite Element Method (FEM) was implemented to solve
the transient equilibrium problem needed to evaluate the comfort and safety criteria as well as the functional con-
straints. The design variables considered in the parametric optimization were the springs and tires stiffness, and
dampers damping. The optimization algorithm used was a modified version of the Particle Swarm Optimization
(PSO). Results show that it is possible to obtain a feasible final configuration minimizing the objective function,
thus improving both safety and comfort criteria.
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1 Introduction

This work considers an off road car designed to the SAE Brazil Baja competition with rules defined by [SAE].
Hence, for this purpose, the components that are applicable are vehicle, frame-work, engine, drive train, driver,
steering system, wheel, suspension system, tires and road. According to [2], the suspension system is responsible
to absorb vibrations transmitted from the ground and also to keep tires in contact with the ground to guarantee
handling stability. This system consists of springs, dampers, tires, and guiding elements,[3].

Regarding road vehicles, there are many different metrics to define a proper design. Among these many
criteria, vehicles must be designed to attend ride safety and comfort. Ride safety can be related to dynamic forces
acting on the wheels while ride comfort is related to the acceleration perceived by the occupants [3]. Nonetheless,
comfort conflicts with handling stability (safety), such that when comfort is improved, safety gets worse and
vice-versa [4]. This compromise is specially hard to achieve in the design of off-road cars aimed to be used in
country roads, where the vehicle is subjected to complex ground excitation patterns along with severe longitudinal
and lateral forces. According to [4], optimization algorithms have been used to modify suspension parameters to
improve performance.

Beyond the suspension system, structural stiffness also influences the overall dynamical behavior. Nonethe-
less, most works aiming to study suspensions use a simplified model for the rest of the car, as for example quarter
car models, used by [4, 5] and [6], with 2 Degrees of Freedom (DOFs). To maximize comfort, all of them defined
the vehicle body vertical acceleration as objective function. The same objective function was also used by [7] and
[8] using half car models with 5 DOFs. Full car models were used by [9] and [10] with 7 DOF. According to [11],
who also adopted the full car model with 7 DOF, it can properly represent the dynamic of the vehicle. These works
show that the use of full car models makes it possible to evaluate angular movements of pitch and roll in addition to
vertical body and wheel movements. However, if there is no intention to consider angular accelerations as comfort
criteria, then one can use a quarter car model, with the advantage of being the simplest model [12].

Despite the advantages found in each one of the simplified methods, it is clear none of them takes into
account the influence of the body of the car in the total stiffness as well the details such as the guiding elements
and suspension assembly angles. Based on this fact, a method which can be used to analyze the total car stiffness,
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including the suspension system and structural elements is necessary to obtain accurate results. The most used
method for this purpose is the Finite Element Method (FEM).

2 Proposed formulation

Assuming the car is modeled by a finite element model comprised of space frame elements, springs, dampers
and lumped masses, one can represent the discrete dynamic equilibrium problem as

MÜ(t) +CU̇(t) +KU(t) = F(t), (1)

where M is the global inertia matrix, C is the global damping matrix, K is the global stiffness matrix, U(t) is
the global displacement vector and F(t) is the global vector of external forces. Time derivatives are denoted by a
single (for velocities) and double (for acceleration) dots.

The elements can be divided in two groups, structural and suspension elements. The stiffness (K) and inertia
matrices (M) of the first one, composed by bar and space frame elements, are defined according to [13].

Proportional damping is used to model damping in space frame elements in this work. According to [14], the
proportional damping matrix is

Ce = αMe + βKe (2)

where α and β are defined for given damping ratio (ζ) related to two natural frequencies of the structure. The
procedure to obtain α and β is detailed by [14].

The second group (suspension elements) is composed by springs, dampers and tires. The spring element can
be defined as similar to bar elements, with axial stiffness given by Ks. For the damper element the axial stiffness
is equal 0 and the axial damping is defined by Cd.

Tire elements were modeled as space frames with effective axial stiffness defined by Kti and torsional, as
well bending stiffness in y and z direction defined by large values (K = 1×1010), to insure just axial displacements
and to avoid lateral rigid body modes.

Road profiles zri(t) are imposed at the vertical DOF of each tire and are the main source of loading in this
work. As tires work as compressive springs, the effective stiffness in each tire is

KT i(t) =

Kti if zwi(t) ≤ zri(t)

0 if zwi(t) > zri(t)
i = 1..nw, (3)

where zw is the vertical displacement of wheel i and nw is the number of wheels. So, the effective force due to
ground excitation is

FT i(t) = KT i(t)zri(t) i = 1..nw. (4)

The dynamic equilibrium equations were defined considering generic base excitation zri(t) and other load
sources Fg . According to [3], the road profile can be approximated by the superposition of N sine waves in the
form

zr(s) =

N∑
n=1

(2Φ(Ωn)∆Ω)
1
2 sin(Ωn(s+ L̃)− ψn), (5)

where s is the longitudinal displacement of the vehicle, L̃ is 0 for front wheels and L (wheelbase) for rear wheels,
Ωn is the wave number and ψn represents the phase number of sine wave n, usually defined by a random number
between 0 and 2π.

The Newmark-β method is the numerical method used to solve the second-order differential equation (1)
[15]. The equilibrium equation is evaluated for different operational conditions, considering a country road profile
and a constant velocity vs [m/s] with ground profiles zr(t) and self weight Fw = −G[M]z , since gravity acts
along the negative vertical, z, direction. Each operational condition also considers additional loads Fg:

• Uniform rectilinear movement: reference condition, Fg = 0,
• Braking: Related to a braking condition when there is a negative longitudinal acceleration (forward inertial

load) Fg = µxG[M]x, where µx is the maximum longitudinal friction coefficient and G = 9.8065m/s2. It
is assumed that the velocity does not change during the simulation;

• Curves: Related to a curve to the right side, Fg = µyG[M]y , where µy is the maximum lateral friction
coefficient;

• Acceleration: Related to positive longitudinal acceleration condition, Fg = −amax[M]x, where amax is the
the maximum expected longitudinal acceleration. It is assumed that the velocity does not change during the
simulation.
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The operator [A]k is defined as

[A]k =

Aii if i isa k

0 if ¬ i isa k
i = 1..ngl, k = x, y, z, θx, θy, θz (6)

where A is a square matrix and ngl is the number of DOFs in the finite element mesh. The operation i isa k is
true if DOF i corresponds to a global direction k. Thus, [A]x returns a vector with the diagonal values of A in the
global x DOFs and 0 in the other DOFs, for example.

Hence, the external force F(t) is
F(t) = FT (t) + Fw + Fg. (7)

According to [16], comfort is defined as the Root Mean Square (RMS) of the perceived vertical acceleration
(z̈(t)). According to [3], the RMS value of z̈i(t), at a given position i is defined as

Ci =

(
1

tf − t0

∫ tf

t0

z̈i(t)
2dt

)1/2

, (8)

where t0 and tf are the initial and final integration time and i are body connection to the suspension system. Hence,
the objective function of the comfort criterion can be written as

ϵc =

nb∑
i

Ci

C0i
, (9)

where C0i is the value of Ci for the initial configuration, nb = 4 is the total of body connections with suspension
system and i corresponds to the global DOFs of front left, rear left, front right and rear right.

According to [3], the criterion to maximize safety is to minimize the dynamic wheel load variation, which
can be obtained by the equation

Si =

 1

tf − t0

∫ tf

t0

[
FS
Ti

− FD
Ti
(t)

FS
Ti

]2

dt

 1
2

, (10)

where
FS
Ti

= Ktizwi0, (11)

is the static load, zwi0 is the initial displacement of the wheel i,

FD
Ti
(t) = Kti(zwi

(t)− zri(t)), (12)

is the dynamic load, Kti is the axial stiffness of the tire i and zwi(t) and zri(t) are the wheel and road vertical
displacements at i.

Normalizing by the initial suspension configuration and adding the contribution of each wheel load, the safety
criterion can be calculated according to

ϵs =

nw∑
i=1

Si

S0i
, (13)

where i is the global degree of freedom correspondent to the vertical movement of each wheel, nw is the number
of wheels and S0i is the value of Si for the initial suspension configuration.

With the definitions of the comfort and safety criteria, it is possible to define the objective function as a linear
combination

ϵ(x) = αc

o∑
j=1

βjϵcj(x) + αs

o∑
j=1

βjϵsj(x), (14)

where αc and αs are the weight factor for each criteria (comfort; safety), βj is the weight factor for each operational
condition and ϵcj and ϵsj are the values of ϵs and ϵs for each one of the o operational conditions. Design variables
considered in this work are suspension (ksf and ksr), tires stiffness (ktf and ktr), and suspension damping (cf and
cr), as represented by

x =
{
ksf ksr cf cr ktf ktr

}T

. (15)
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The constraint function related to the maximum deflection in the suspension is given by

g1 =
dsmax

d̄s
− 1, (16)

where d̄s is the maximum value that dsmax can assume for an acceptable setup and

dsmax = max(|dsi(t)|) ∀i = 1, 2, ..., ns, (17)

where ns is the number of the suspension set (spring plus damper elements), ||dsi(t)|| is the norm of dsi(t)

dsi(t) = zbi(t)− zwi(t), (18)

where zbi(t) is the vertical displacement of body at connection with the suspension i, zwi(t) is the vertical dis-
placement of wheel at same suspension position i.

The constraint function related to the tire deflection is given by

g2 =
|dtmin|
d̄t

− 1, (19)

where d̄t is the maximum value that |dtmin| can assume for an acceptable setup and

dtmin = min(dti(t)) ∀i = 1, 2, ..., nt, (20)

where nt is the number of tire elements and dti(t) is given by

dti(t) = zwi(t)− zri(t), (21)

where zwi(t) is the vertical displacement of wheel i, zri(t) is the vertical displacement of road at same wheel
position i.

For an oversteer behavior, it is necessary that the rear torsional stiffness is higher than frontal torsional
stiffness [17].

Two static analysis are performed to estimate the difference between the frontal and rear torsional stiffness:
• Applying a torque T at the rear nodes related to the fixation of suspension system at the structure;
• Applying a torque T at the frontal nodes related to the fixation of the suspension system at the structure.
Thus it is possible to obtain the difference between the right and left displacement for rear nodes in the first

analysis and for the frontal nodes in the second analysis. The relation between frontal and rear torsional stiffness
is given by

γ =
|zb1 − zb3| − |zb2 − zb4|

|zb2 − zb4|
, (22)

where zb1, zb2, zb3 and zb4 are the vertical displacement of the body in the front left, rear left, front right, and rear
right positions, respectively.

The oversteer constraint is then defined as
g3 = −γ

γ + 1, if γ > 0

g3 = −γ

γ + 1, if γ ≤ 0

, (23)

where γ is the minimum value assigned for the relation between frontal and rear torsional stiffness.
The optimization problem can be written as

min ϵ(x)

x

S.t.

MÜj(t) +CU̇j(t) +KUj(t) = Fj(t) ∀ j ∈ 1, 2, ..., o

gjl (x) ≤ 0 ∀l = 1, 2, ...,m , j = 2, 3, ..., o

x ≤ x ≤ x̄

(24)
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where o is the total number of operational conditions, beginning from j = 2 because it is not evaluated for
suspension and tires deflection for uniform rectilinear movement, which is the less severe condition. m is the total
number of functional constraints x and x̄ are the lower and upper side constraints.

As the number of design variables is small, a populational zero order method is a viable option to solve
the optimization problem stated in Eq. (24). In this work, it is used the Particle Swarm Optimization method,
first proposed by [18] and uses a swarm of N particles, or candidate solutions, to explore the design space. The
traditional PSO algorithm does not consider functional constraints. Thus, the modification proposed by [19] for
genetic algorithms is used herein.

3 Results

The car model used in this study was provided by the UDESC Baja team (Velociraptor), which is shown in
the figure 1.

Figure 1. Car model

Table 1 shows the results of 10 independent runs of the optimization algorithm. Results shown in Tab. 1
present small variation (1.17%) of the optimized objective f(x)∗. The stopping criteria is the number of iterations
without improvement (20). The run number 4 is the best solution among the 10 runs.

Table 1. Results after running the PSO 10 times

ksf [N/m] ksr [N/m] cf [Ns/m] cr [Ns/m] ktf [N/m] ktr [N/m] f(x∗)

1 5775,6 5725,6 658,2 1278,1 28000,0 28000,0 43,10%

2 6642,9 5454,1 1000,0 1227,9 28000,0 28000,0 43,81%

3 5977,1 5541,4 722,8 1164,3 28000,0 28000,0 43,08%

4 5539,1 5771,6 726,4 1051,6 28000,0 28000,0 42,98%

5 5402,5 6069,1 615,9 1703,9 28000,0 28000,0 43,56%

6 5000,0 7640,9 951,2 1060,3 28000,0 28000,0 43,85%

7 5405,0 6018,7 633,8 1460,6 28000,0 28000,0 43,22%

8 5564,1 6163,3 518,3 1189,3 28000,0 28000,0 43,51%

9 5311,1 6575,3 587,2 1938,9 28000,0 28000,0 44,15%

10 5000,0 7574,4 1000,0 1301,2 28000,0 28000,0 43,94%

The behavior of the optimized solution, compared with the initial one, during the transient analysis for each
operational condition is shown in the figure 2. It is possible to verify a significant decrease of amplitudes of the
body acceleration and the normalized tires deflections, which reduce the integrals therms of equations 8 and 10
and, consequently, the comfort and safety criteria values. The individual contributions to the objective function are

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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ϵc = 0.338, Eq. (9), and ϵs = 0.522, Eq. (13). Thus the optimized solution provides an improvement of 66.2% of
comfort and 47.8% of safety.

Figure 2. Normalized tire deflection and body acceleration

The functional constraints g1 = −0.004, related to the suspension deflection, and g3 = −0.010, related to
the oversteer behavior are active, with values close to 0. The functional constraint related to the tire deflection
(g2 = −0.435) is not active, what is expected once the side constraints x5 = 28000 N/m and x6 = 28000 N/m,
which are the tire stiffness (ktf and ktr), were active.

4 Conclusion

The parametric optimization of suspension parameters for a compromise between comfort and safety is dis-
cussed in this work. User can adjust these criteria by setting the weight factors according to a given priority and
the weight factors associated to the operational conditions.

Results show an improvement of 57% with respect to the reference (initial) configuration. The parameters
used in the PSO algorithm lead to a variation of 1.17% in the objective function after 10 independent runs, indicat-
ing a proper tune to this class of optimization problem. The best result (improvement of 57.02%) is associated to
an improvement of 66.2% in comfort and 47.8 in safety. This result was limited by the active functional constraints
associated with the maximum suspension deflection and oversteer behavior, and side constraints associated with
the minimum tires stiffness.

A decrease in the dynamic forces on wheels (when compared to the static case) is observed in all operational
conditions. This is related to the Safety Criteria. The same trend is observed in the vertical acceleration of the 4
points linking the body to the suspension element, for all operational conditions.

Acknowledgments. Authors acknowledge the financial support of the Santa Catarina State Research and Inno-
vation Funding Agency (grants 2019TR779 and 2021TR843), UDESC for the PROMOP scholarship and CNPq
(National Council for Scientific and Technological Development/ Brazil), grant 303900/2020-2.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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