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Abstract. This article addresses robust continuous topology optimization of resonant structures under uncertain
excitation frequency. The harmonic dynamic response is evaluated by a density-weighted norm and the optimiza-
tion problem is solved by using the Method of Moving Assymptotes. The formulation is assessed by using a
common benchmark problem. Results show that the proposed formulation leads to the design of resonant struc-
tures with improved robustness. Results also show that the mechanism used by the optimizer to improve robustness
depends on the magnitude of the target excitation frequency: at lower frequencies, a low-energy resonance is used
to create an interval around the target frequency with minimized dynamic response variations whereas at higher
frequencies, a pair of high-energy resonances is located at the neighborhood of the target excitation frequency to
create the same effect and improve the dynamic robustness.
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1 Introduction

A formulation for the robust design of resonant structures considering uncertainties in the excitation frequency
is proposed to maximize the dynamic response while minimizing its variance around a given target frequency. In
general, due to the nature of dynamic problems and specially at resonance, structures are highly sensitive to the
excitation frequency as they are only resonant at very narrow intervals of the frequency spectrum. However, for
some applications, such as energy harvesting from vibration, a smoother dynamic response behavior around reso-
nance could improve power generation in scenarios where the excitation frequency is not precisely synchronized
to the resonance.

Such improved dynamic behavior can be achieved by using the robust approach to design structures less
sensitive to changes in operation parameters, as the excitation frequency, with the lowest possible penalty in the
dynamic response amplification at a given target frequency.

Regarding the maximization of harmonic response, the first work on this area is [1] where the problem of
disconnections from the boundary conditions is reported. Static compliance has been added as a constraint to solve
the issue. The work of [2] reports spurious modes in void regions and proposes the use of external dampers to
ensure proper connection to the essential boundary conditions. In [3], an objective function was proposed with
two different parts. The first one ensures the maximization of the output displacement, thus increasing the energy
generated, and the second one ensures minimization of perpendicular stiffness such that the device would not touch
the surroundings. This second part of the objective function ends up increasing the static stiffness and ensures a
well connected structure.

Concerning the maximization of the dynamic displacement, both the input power and the dynamic stiffness
have been evaluated by [4] for the design of resonant structures, where the static compliance was added to the
formulation to aid in the structure connection to the supports. Furthermore, a complete analysis of several different
ways of using the dynamic compliance in harmonic response maximization problems is discussed in [5], where it
is shown that minimizing the dynamic compliance results in anti resonance for designs targeting frequencies above
the first resonance, leading to convergence problems.
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More recently, [6] proposed a density-weighted norm able to precisely identify resonances even for large
damping ratios as well as hinder the presence of non-physical modes in void regions. However, addition of static
compliance is still used for ensuring connectivity. Since the mentioned capabilities are perfectly aligned to the
goals herein discussed, this is the formulation used in this work.

Recently, the robust design of non-resonant structures was evaluated by the authors [7]. Monte Carlo Simu-
lation method, considering a particular method of stratified sampling was used to model the uncertainties and to
evaluate both the expected value and the standard deviation of the dynamic displacements. The method therein used
for minimization of dynamic displacements is now used for maximization, such that this article can be considered
as an extension of this previous work, as will be further discussed.

Thus, based on the literature overview, but specially on [7], a formulation is proposed for the design of
resonant structures considering uncertainty in the excitation frequency. The method consists in using the density-
weighted norm for describing the dynamic displacements under each excitation realization and a modified Monte
Carlo Simulation method with stratified sampling [8] for providing probabilistic data for the optimization process.
Static compliance is added to the formulation to ensure structural connectivity, given the fact that the density-
weighted norm cannot, alone, guarantee it.

2 Proposed formulation

As discussed in the previous section, the main objective of this work is the design of robust resonant structures
with respect to uncertainties in the excitation frequency.

Classical SIMP approach is used for plane stress problems in this work, with the mass parametrization pro-
posed by [9]. Simple spatial filter and projection technique are used to avoid intermediate results and mesh depen-
dency [10].

The objective function is comprised of two terms. The first term is the robust term

R(ρ,Ω) =
γ1E[NmwdB(ρ,Ω)] + |γ1|ϕStd[NmwdB(ρ,Ω)]

E[NmwdB(ρ,Ω)]0 + ϕStd[NmwdB(ρ,Ω)]0
, (1)

where E[NmwdB(ρ,Ω)] and Std[NmwdB(ρ,Ω)] are the expected value and standard deviation of the density-
weighted norm NmwdB , [6], as a function of the vector of relative densities ρ and the uncertain angular frequency
Ω. The weighting factor ϕ is used to set the relative importance of the standard deviation with respect to the
expected value. Weight γ1 multiplies both the expected value and the standard deviation in Eq. (1), however,
Std[.] is multiplied by |γ1| to ensure that the standard deviation is always minimized regardless of the signal of γ1
(in this work, it is always negative). This weight is used to set the relative importance with respect to the second
term in the final objective function, as it will be explained in the following. The objective function is defined as a
linear combination of two terms: the robust design formulation presented and the static compliance. The problem
is defined as

minimize
ρ

Φ(ρ,Ω) = R(ρ,Ω) + (1− |γ1|)
ΥS(ρ)

Υ0
S

subject to KD(ρ,Ω)U(ρ,Ω) = F,

K(ρ)US(ρ) = F,

V (ρ) =
ne∑
e=1

ρeV
0
e ≤ V̄ ,

ρl ≤ ρ ≤ ρu,

(2)

where KD is the harmonic stiffness matrix, K the static stiffness matrix, F the force vector, U is the complex vector
of harmonic displacements and US is the vector of static displacements, used to compute the static compliance
ΥS . Υ0 is the initial value, used for scaling this term. Both equilibrium equations are identically satisfied during
the finite element computations, such that the only functional constraint is the (deterministic) volume V (ρ) =∑
ρeV

0
e ≤ V̄ . The optimization problem defined in Eq. (2) is solved using the MMA method [11]. The Local

Averaged Stratified Sampling method, LASS, is used to compute both the expected value and standard deviation
[8].

3 Results

Even though the formulation herein described allows the use of any kind of probability distribution, a trun-
cated normal distribution is used in this work to model the uncertainties, as suggested in [7]. The motivation for
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this definition is that, theoretically, a normal distribution can result in the evaluation of negative realizations or even
unrealistic high frequencies, which would have no physical meaning in the context of this work. The truncation is
defined such that at least 99.7% of the realizations of the non-truncated distribution is represented by the truncated
distribution. Thus, the interval of interest is defined as ±∆ω around the mean ω̄, which is the target excitation
frequency. The uncertain frequency Ω, therefore, is modeled as

Ω ∼ N (ωl, ωu, ω̄, η) , (3)

where ωl and ωu are the lower and upper bounds of Ω, ω̄ is the mean angular frequency value and η is the standard
deviation. The referred bounds are written as

ωu,l = ω̄ ±∆ω, (4)

where ω̄, η and ∆ω are defined for each one of the test cases.
The number of bins used in the pre-processing of the LASS method was found after a careful evaluation of

the errors for the expected value, standard deviation and the Inf norm of gradient for the worst case (large η and
small ϕ), i.e., with large output standard deviation of NmωdB , as described in [7]. Based on the results of the
referred study, Nbins = 30 is used to perform all the optimizations in this article. All optimized results are verified
using the full MCS method with 1× 106 realizations.

The test case considered in this work is the same found in [5–7] and it is shown in Fig. 1. The load is
homogeneously applied along edge c and the relative densities of all elements on this region are kept constant and
equal to 1.0 during the optimization.

Figure 1. Problem Definition.

a

b

c

Ԧ𝐹

The maximization comprises all vertical degrees of freedom of the nodes located at the edge c. Relevant data
used in this test case are a = 0.5 [m], b = 1.0 [m], c = 0.1 [m], Young Modulus 210 [GPa], Poisson 0.3, mass
density 7860 [kg/m3], Harmonic Load F = 10000 [N ]. A mesh of 140 × 70 elements four-node incompatible
bilinear isoparametric elements is used, due to its capability to represent bending behavior, specially in slender
reinforcements. A filter radius of 0.02m is used in all examples. Parameters γ1 and V̄ are defined as −0.75 and
0.5|Γ|, respectively, where Γ is the total area of the design domain. Thus, 1 − |γ1| = 0.25, making the objective
function dominated by the dynamic norm, as intended. Exponents from the density-weighted norm are defined as
m = 8.0 and w = 2.0. A high value of the exponent m, i.e. above 2.0, helps the dynamic norm to identify the
resonances [6].

Although the formulation is developed using the concept of angular frequency ω, all the frequencies in this
section are shown as f Hz. Thus, following the work of [6], mean frequencies of f̄ = 365 and f̄ = 1135 Hz are
used to assess the behavior of the formulation at different regions of the frequency response. A single deviation of
η = 20 Hz is used in all examples with ∆ω = 60 Hz, to account for at least 99.7% of the original frequency (not
truncated) content. Topologies obtained for the deterministic maximization of the harmonic response are shown in
Fig. 2 for reference. Parameter ϕ is used to study the formulation.

Figure 3 depicts the topologies obtained at f̄ = 365 Hz for different values ofϕ. Deterministic-like topologies
were obtained by the use of lower values of ϕ, as expected. However, for ϕ = 50, a different design with a different
overall shape, disposition of reinforcements and visible different stiffness in the connection arrangement to the
loaded edge is obtained. A comparison of the frequency responses is shown in Fig. 4, where it can be noticed a
radical change in response for ϕ = 50.0, where a low-energy resonance appears close to the target frequency.

Topologies obtained for f̄ = 1135 Hz are shown in Fig. 5. A very interesting result is the loss of symmetry
as ϕ increases. As shown in Fig. 6, robustness is achieved by the presence of two additional modes close to the
resonance frequency, as a result of the lack of symmetry.
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Figure 2. Topologies obtained with the deterministic approach for the test case depicted in Fig. 1.

365.0 Hz 1135.0 Hz

Figure 3. Topologies obtained for maximization at 365 Hz, for different values of ϕ.

ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

Figure 4. Frequency response of the deterministic design and robust design cases at 365 Hz, where Robust Design
1, 2 and 3 correspond to ϕ = 10.0, 20.0 and 50.0, respectively.
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4 Conclusion

A formulation is proposed for the robust design of structures with maximum dynamic response with respect
to uncertainties in the excitation frequency. The physical artifice employed by the optimization process to improve
robustness was the development of resonances located close to the target frequency, leading to high dynamic
displacements together with a robust dynamic behavior. Result at 365 Hz shows that the feasible solution was
a low-energy resonance located close to the excitation frequency, whereas at 1135 Hz the mechanism was the
formation of two high-energy resonances located before and after the target excitation frequency.
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Figure 5. Topologies obtained for maximization at 1135 Hz, for different values of ϕ.
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Figure 6. Frequency response of the deterministic design and robust design cases at 1135 Hz, where Robust Design
1, 2 and 3 correspond to ϕ = 10.0, 20.0 and 50.0, respectively.
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