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Abstract. This work aims to create an artificial neural network model to assist steel beam design either beam profile
and its connection with the column. The input data for the model are the beam length and the applied distributed
load. The output data are the beam profile, the connection angle profile, and the number and diameter of connection
bolts. We selected for training 10 W-type profiles, 3 angle-type profiles, and 2 bolt diameters. The data for training
the neural network has been acquired from the design results according to the Brazilian standard NBR-8800:2008
criteria. The bending moment and shear forces have been calculated from beam internal stresses. The internal
stress diagrams have been obtained from the finite element method (FEM) results. The beam analysis with the
FEM has been carried out with a flat shell quadrilateral element (plane stress plus Kirchhoff-Love plate effects)
for profiles and a three-dimensional frame element for bolts. All nodes at the hole edge and the bolt element in the
same plane are coupled. The modeled neural network has been evaluated with its confusion matrix and its accuracy
in indicating configurations that attend the design criteria. The results show a good prediction performance and
errors obtained are acceptable when compared to the level of safety factors of structural engineering.
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1 Introduction

The use of neural networks for the design and connections in steel structures has been a subject of several
authors. To predict the flexural resistance and initial stiffness of beam-to-column steel joints Lima et al. [1]
proposed the use of artificial neural networks (ANN) using the back propagation supervised learning algorithm.
Lima et al. [1] believe that the errors obtained are acceptable when compared to the level of safety factors of
structural engineering and the ANN results proved to be consistent with experimental and design code reference
values, however, the results obtained need to incorporate new experimental data. To provide an estimator for the
mechanical behavior of steel structure connection elements Abdalla and Stavroulakis [2] proposed a supervised
learning backpropagation ANN. One of the Abdalla and Stavroulakis [2] conclusions is an appropriate data set
should be used for training the network that includes all possible combinations of design variables that arise in
practice and the choice of the ANN configuration depends on the case and that the values must be chosen after
numerical experiments and can be adjusted iteratively during the training phase. According to Harshada [3] the
ANN can predict solutions that are close to exact solutions with acceptable margins which are close to optimal
design solutions provided by training data if the data reflects that optimal solutions.

The objective of this work has been to create a model of artificial neural networks to assist in the design of
the beam profile and its connection with the column. The input parameters are the beam length L and the applied
distributed load q. The output parameters are the beam’s W profile, the angle profile, the diameter, and the number
of bolts.

2 Methodology

The first step in the modeling of artificial neural networks that aim to assist steel beams connected to columns
through web bolted double angle connections design was to select the W-section profiles, the angle-type profiles,
and the bolt diameters that will be used for training neural networks. For this, we selected civil construction profiles
from a manufacturer catalog. We selected 10 W-type profiles (table 1) with ASTM A36 or ASTM A325, 3 angle
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Table 1. Dimensions of the W sections and values for the profile input for the neural network that predicts the
connection.

Short name Section (mm x kg/m) d (mm) bf (mm) tw (mm) tf (mm) Input value

A W 150 x 13.0 148 100 4.3 4.9 0.000

B W 150 x 18.0 153 102 5.8 7.1 0.111

C W 150 x 22.5 152 152 5.8 6.6 0.222

D W 150 x 24.0 160 102 6.6 10.3 0.333

E W 200 x 15.0 200 100 4.3 5.2 0.444

F W 200 x 35.9 201 165 6.2 10.2 0.556

G W 200 x 86.0 222 209 13.0 20.6 0.667

H W 200 x 100.0 229 210 14.5 23.7 0.778

I W 250 x 25.3 257 102 6.1 8.4 0.889

J W 250 x 28.4 260 102 6.4 10.0 1.000

profiles (a: L 45 x 3 x 2,12, b: L 45 x 4 x 2,77 and c: c L 45 x 5 x 3,38) and 2 bolt diameters (12.7 mm (1/2”),
15.88 mm (5/8”)). We choose the angle profiles and the bolt diameters for the connections to attend the minimum
spacing recommended by the ABNT [4] standard. We tested beams connected through the web bolted double angle
connections in the web or the flange of column profile. We assembled connections with 2 or 3 ASTM A325 bolts
per angle leg.

We analyzed different combinations of W profiles and web bolted double angle connections using the element
method to obtain the beam bending moment and shear forces diagrams. Then, we used these diagrams to design
checks according to the ABNT [4] standard. Later, we applied the design results as parameters for neural network
training.

2.1 Mechanical Modelling

We evaluated each of the beams with their connection using the finite element method and, for this, we
employed two types of elements. We adopted for the W profile and the angle mesh the four nodes’ flat shell
element. This element has the plane stress and plate effects according to Kirchhoff-Love Jawad [5] theory and has
2 degrees of freedom referring to the plane stress effects and 3 degrees of freedom referring to the plate ones.

For the bolts modeling of the bolts, we used the spatial frame element with two nodes and a constant section.
Each element node has 6 degrees of freedom, being 3 displacements and 3 rotations Azevedo [6]. We implemented
the finite element method used in the work in Python. The figure 1a presents a beam mesh connected to the column
flange and the figure 1b presents one connected to the column web.

We considered that the nodes at the hole edge have the same displacements in all degrees of freedom of the
corresponding node in the frame element (except the torsional one) representing the bolt. The contact is illustrated
in the figure 1c.

In this work, materials are considered linear elastic, the relation displacements-deformation is considered
only the first order, and loads with a limited intensity are applied to guarantee that there are small displacements
and rotations in the cross-section, thus guaranteeing the validity of the Euler-Bernoulli beam theory. We used
the stress results obtained in the finite element mesh elements to obtain the bending moment and shear forces in
predetermined sections along the beam according to equations 1 and 2, respectively.

My =

∫
A

zσxdA (1)

Qz =

∫
A

τxzdA (2)

We calculated the design values of shear and bending moment diagrams to check the profiles. To obtain the
design values, we considered that the beam has a buckling length equal to its length L, is not laterally restrained,
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(a) Beam connected to the flange of the
column.

(b) Beam connected to the web of the
column.

(c) Contact detail.

Figure 1. Finite element mesh details.

and does not have web stiffeners. At the end of the beam check, we calculated beam utilization factor fbeam as:

fbeam = max

(
VSd

VRd
,
MSd

MRd

)
(3)

To verify the connection, we calculated the values of the traction forces applied to the bolt Ft,Sd, the shearing
force applied to the bolt Fv,Sd, the contact force due to the pressure of bolt contact with the edge of the hole Fc,Sd,
and the shear collapse force Fr,Sd. Then, we calculated according to the ABNT [4] standards, the design values
of the traction forces in the bolt Ft,Sd, the shear force in the bolt Fv,Rd, the contact force of the bolt with the edge
of the hole Fc,Rd, and the force resistant to collapse by tearing Fr,Rd. In addition, we verified the angle profile
using the Von Mises maximum stress criterion σvonmisses on the profile steel ultimate strength fu. At the end of
the check, we calculated the utilization factor of the fconnection connection as:

fconnection = max

(
Ft,Sd

Ft,Rd
,
Fv,Sd

Fv,Rd
,
Fc,Sd

Vc,Rd
,
Fr,Sd

Fr,Rd
,
σvonmisses

fu

)
(4)

2.2 Neural network modelling

We defined two models of neural networks, one for the beam profile and the other for the connection elements.
The first model of neural networks has as input parameters the beam span L and the linear load q distributed on the
beam. The output parameters are the classification of whether or not a given W profile verifies the design criteria.
Its architecture is multi-layered, with fully connected layers. For the inner layers, we used the activation function
ReLU because the gradient of a ReLu is either zero or a constant, so it is possible to outcome the vanishing
exploding gradient issue. ReLU activation functions have been shown to train better in practice than sigmoid
activation functions Patterson and Gibson [7]. In the output layer, we used the sigmoid activation function as it
assumes values between 0 and 1.

The input values are the normalized values of the length L and the distributed load q. Each value yi of the
output vector is calculated as:

fm,i =

1 fbeam,i ≥ 1
mmax −mi

mmax −mmin
fbeam < 1

(5)

yi = tanh(fbeam,ifm,i) (6)

being fm,i the mass factor for the profile i, mi is the profile mass value, mmin is the profile masses smallest
value, mmax is the profile masses highest value, fbeam,i is the profile utilization factor value and yi is the profile
expected neural network output value i.

We used the tanh function for normalization because its value for x = 0 is equal to zero and has an upper
limit equal to 1, being a good representation for the utilization factors values that are higher values than zero, begin
that there is a greater interest in the values of x in the range between 0 and 1.

In the same way as the first network, the second neural network has as parameters the length L, the linear
distributed load q and also includes the beam profile as an input parameter. This network has the same architecture
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and activation functions as the first one. The output layer classifies a given angle configuration, diameter, and the
number of bolts that verify the design criteria. The number of units of the output layer has the same number of
connection element configurations grouped by angle, diameter, and number of bolts used for training.

We adopted the input values according to the table 1. Each yi value of the output vector is calculated as:

fm,i =

1 fconnection,i ≥ 1
mmax −mi

mmax −mmin
fconnection < 1

(7)

yi = tanh(fconnection,ifm,i) (8)

being fm,i the configuration mass factori, mi is the angles mass value, mmin is the angles masses smallest
value, mmax is the angles masses highest value, fconnection,i is the connection utilization factor and yi is the
expected neural network output value for the i configuration. A profile verifies the design criteria when the output
value is less than or equal to 0.8, as this is the normalized value when the utilization factor is equal to 1. We
used the Adam algorithm as an optimizer for training both neural networks because it is computationally efficient
Kingma and Ba [8].

3 Results

We tested the neural network models using a test set of beams and their connections. We choose the spans
and loads for testing randomly within the range of values used for training. For each beam and its test connection,
we calculated the utilization factors according to the design criteria, following the same steps used for the training
data. With these results and the results obtained by the neural network, we created the confusion matrix. A case is
positive when the configuration verifies the design criteria and negative when it does not verifies the design criteria.
Thus a case is true positive when the configuration verifies the design criteria and the neural network has indicated
that the configuration indeed verifies the criteria. The 2 table shows the number of hidden layers, the number of
epochs used for training, the values of the confusion matrix, and the accuracy of the four neural network models
used.

Table 2. Architecture, confusion matrix and accuracy for each neural network.

Type Connected to Size of hidden layers Epochs TP TN FP FN Accuracy (%)

Profile web 32,64,64,32 20 19646 655 38 253 98.6

Profile flange 32,64,64,32 20 19757 524 169 142 98.5

Connection web 64,128,128,64 20 198 14496 5403 495 71.4

Connection flange 64,128,128,64 20 198 14498 5401 495 71.4

We chose a case to show the application of the neural network models developed previously. The case is a set
of beams representing the beams of a 9.3 m by 5.2 m floor, split into 5.7 m and 3.6 m within the major length.

Beams at floor major length are connected to column flanges. In this example, there are beams connected
both in the web and in the column profile flange. We presented in the table 3 for each beam, the length values,
applied distributed load values, and which elements of the column profile are connected.

We show the neural network output values for each of the W profiles of each beam in the 3a graph. We
present the neural network output values for each of the connections of each of the beams in the graphs 3b, 3c and
3d, 3e and 3f. The normalized value 0.8 represents the limit to be considered for a given profile or connection to
verify the design criteria.

Considering the output results of the neural network, for the profile of beams V1 and V3, it chose section W
250x25.3, for beams V2, V4, and V5, section W150x13.0, for beam V6, section W150x24.0, and beam V7 the
section W150x22.5. For beams V1, V3 and V6, it chose the connection with the 45x5x3.38 angle profile with two
12.7mm bolts. For beams V2, V4, and V5, angle profile 45x3x2.12 with 2 bolts of 12.7mm. And finally, for the V7
beam, the angle 45x3x2.12 with 3 bolts of 12.7mm. We present in the figure 2 the beams profiles and connections
three-dimensional drawing that it chose.
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Table 3. Beams of the case.

Beam Length (m) Load (kN/m) Connected to Beam Length (m) Load (kN/m) Connected to

V1 5.70 21.8 Flange V5 5.20 8.4 Web

V2 3.60 14.6 Flange V6 5.20 24.8 Web

V3 5.70 21.8 Flange V7 5.20 20.2 Web

V4 3.60 14.6 Flange

Figure 2. Three-dimensional drawing of the beams of the case with the profiles and connections predicted by the
neural networks

4 Discussion

In this work, we used only the shear and bending diagrams. We not considered the normal forces because its
values are less than 1 kN.

The neural networks trained in this work can be used during the design to find out if a beam profile and its
connection verifies the design criteria or not. We achieved better results from the neural network for the beam
profile when compared to the neural network results of the connection elements. For a more practical application
of these neural network models, it is necessary to investigate and improve the results of the neural network that
defines the elements of the link. Also, both networks need a training set with more profiles and thus make the use
more widespread.

We do not trained the neural networks considering the influence of other connected beams on the column
profiles. Depending on the stiffness of the connection and the column, other connected beams may influence the
results, so it is important to consider that we have approximated results.

Another limitation of the work is the reduced set of profiles, beam lengths and applied load values, with beam
lengths being limited to the range of 3 to 6 m and the values of distributed loads being limited to the range of 5 to
25 kN/cm.

In addition, another limitation of the neural networks trained at this work is the indication of predetermined
profiles. An alternative approach would be not to indicate a profile, but to make the neural networks more generic,
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Figure 3. Predicted values for beam profiles in the case
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for example, indicating the necessary dimensions for the profiles to then define the profiles. The results of neural
networks are also limited to the design criteria of ABNT [4] standard and to the ultimate limit state.

In general, the use of neural networks can facilitate and make the design of the beam in steel structures easier,
but more studies are needed before their use in projects.

5 Conclusions

Even with the limitations already described above, it can be said that we achieved the objective of developing
a tool to aid in the design of beams of steel structures with a W-section connected to columns of the same type
through double-angle bolted connections.
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