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Abstract. Oil & Gas companies have been looking for new hydrocarbon deposits in deep and ultradeep waters.
However, this scenario has shown numerous challenges related to exploiting these natural resources, forcing the
offshore industry to invest in new technologies to resist extreme environmental conditions and increase operational
safety. Therefore, understanding how to evaluate crack behavior in offshore structures is essential as it helps predict
the equipment’s service life, reduces the cost related to inspecting, and avoids accidents. Hence, this work studies
crack propagation in tensile armors of flexible pipes considering corrosive environments. The cross-section of the
analyzed tensile armors was assumed to be rectangular, and the nonlinear material response was represented with
the Ramberg-Osgood model. Finally, two-dimensional (plane-stress) finite element (FE) models were constructed
to evaluate the effect of cracks in these armors. The FE models estimated the energy release rate (J−integral)
and stress intensity factor (KI ) when cracked armors were under operational loadings. The BS7910 standard’s
equations calculated the fracture parameters as well. Then, the responses obtained with both models helped to
elaborate on the failure assessment diagram (FAD) level 1. These analyses allowed an understanding of the wire’s
capacity for several crack sizes and operational loadings.

Keywords: Flexible pipes, Tensile armor wires, Finite element, corrosion environment, the FAD diagram.

1 Introduction

Mechanisms such as plastic collapse, fatigue, corrosion, creep, fracture, etc., may provoke failures in struc-
tures under service loads. Sometimes, these failures are catastrophic and represent a loss of money, environmental
contamination, and even lives. Therefore, it is essential to study the crack effects and understand the concepts
behind the fracture mechanics to prevent structural failures.

The stress corrosion cracking (SCC) is defined as the combination of: (i) sensitive material (microstructure,
chemical composition, etc.), (ii) corrosive environment (corrosion potential, temperature, etc.), (iii) tensile stress
(residual stress, operational stress, etc.), and (iv) presence of gases (CO2 and H2S) (Gentil and Carvalho [1]). An
example of these failures occurred in 2017, when the Brazilian National Agency of Petroleum, Natural Gas, and
Biofuels (ANP) was notified about a rupture in a flexible pipe (gas injection) after two operating years, despite
being designed to operate for 20 years. In this case, the pipe annulus was rich in CO2, which favored the stress
corrosion of its tensile armors and their premature rupture. Hence, the stress corrosion cracking by CO2 (SCC-
CO2) was the primary failure cause. Moreover, other cases of failures involving SCC or SCC-CO2 mechanisms
were notified by Hanonge et al. [2]. Brandao et al. [3] presented a literature review showing the improvements
in the flexible pipe structure since SCC-CO2 was first observed. They highlighted that the residual stresses and
strains in the tensile armors are critical parameters in the flexible pipe design against SCC-CO2.

Although the Oil & Gas companies and academia have been studying and replicating the failure mode, there
is no solution to this problem. Therefore, it is necessary to understand the tensile armors wires’ capacity when there
is a flaw. Then, studying crack propagation through analytical and numerical models allows an idea of the stress
and strain field, even though the stress and strain levels are an approximation of the actual scenery. This paper
focuses on the mechanical response of tensile armor layers considering the SCC-CO2 mechanism. The present
work aims to study the wire’s capacity through the fracture parameters ( J−integral or KI ) generated at a crack
tip and the failure assessment diagram (FAD)
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2 Fracture parameters

The linear elastic fracture mechanics (LEFM) cannot be used to calculate the potential energy release rate per
crack extension area G when the crack tip has a critical plasticity zone. Then, the J−Integral, proposed by Rice,
replaces Griffith’s energy approach as the new design fracture criterion to quantify fracture in elastic and plastic
conditions (Rice [4]). The J−integral is defined as:

J =

∫
Γ

(
Udy + Ti

∂ui

∂x
ds

)
, (1)

U =

∫
εij

σijdεij , (2)

Ti = σijnj , (3)

where U is the strain energy density function, Ti is the traction vector component at a point on the crack tip contour
Γ, ni is the unit normal vector to Γ, ui is the displacement vector, and ds is the length increment along the contour
path Γ (Fig. 1).

The J−integral has several properties, and Castro and Meggiolaro [5], defined some of them:

1. Linear elastic (LE) and elastoplastic (EP) materials can be considered.
2. The J−integral is equal to 0 in any closed path.
3. The J−integral is path-independent.
4. There is a correlation between J and the crack tip open displacement (CTOD).

In the linear elastic regime, the stress intensity factor KI and the energy release rate J-integral can be calcu-
lated as:

KI = σx
√
πaif(ai/h),with, σx =

Fx

AFf
, (4)

J =
K2

I

E
, (5)

where Fx, A, Ff , ai, f(ai/h), and E are the axial force, the cross-section area, the form factor, the crack size in
the specimen, the geometry factor, and the Young modulus respectively.

3 Analytical model

The analytical response in the linear elastic zone was calculated using eqs. (4) and (5); the cross-section area
and geometry factor are:

A = wh, (6)

f(ai/h) =


0.265

(
1− ai

h

)4
+

0.875+0.265
ai
h(

1− ai
h

3
2

) 0.5% for ai

h ≤ 0.6√
2h
πai

tan
(
πai

2h

)( 0.752+2.02( ai
h )+0.37(1−sin(πai

2h ))
3

cos(πai
2h )

)
1% for ai

h < 0.2, 0.5% for ai

h ≥ 0.2,
(7)

where w and h are the width and height of the cross-section. The geometry factor f(ai/h) is taken from Tada,
Paris, and Irwin [6] for a single edge notch test specimen.

4 FE model

A source code was written in the commercial FE package ANSYS® to calculate the J−integral and KI

when there is crack propagation. The armor is modeled using two-dimensional geometry, and its dimensions are
displayed in Fig. 1. The total length of the specimen is L = 100 mm, but due to symmetry, only its half was
studied.

In ANSYS®, the geometry was modeled using the 8-node element PLANE183 element. The analysis was
conducted under plane stress conditions. The crack tip mesh design, concentric circles were built to correctly
calculate the J−integral and KI , as shown in Fig. 1. These contours help the ANSYS® program calculates the
fracture parameters properly.
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Figure 1. Tensile armor wire, crack depth, and boundary conditions

Castro and Meggiolaro [5] indicates different analytic approximations to represent the stress and strain curves.
In this work, the Ramberg-Osgood model, Eq. (8), describes the nonlinear physical behavior, and its parameters
are taken from Table 1.

ε =
σ

E
+
( σ

H

)n
, (8)

where H and n are the strength coefficient and strain hardening exponent, respectively.

Table 1. Material properties

E(GPa) ν G(GPa) H(MPa) n σy(MPa) σu(MPa) KIC(MPa
√
m)

200 0.3 76.92 900 15.0 700 780 100.0

After configuring the boundary conditions and parameters of analysis in the ANSYS® program, it is necessary
to define the commands associated with fracture calculation. They are expressed through the following commands
ANSYS [7]:

1. /SOLU : Solution environment.
2. CINT,NEW,id : Starting a new calculation.
3. CINT,TYPE,SIFS or JINT : Defining the type of fracture parameters to calculate (J-integral, KI , etc.).
4. CINT,CTNC,Cnode : Defining the node where the crack is localized.
5. CINT,SYMM,ON : Indicating symmetry condition.
6. CINT,NORM,0,1 : Defining the normal plane to the crack.
7. CINT,NCON,Nc : Defining the number of contours to calculate the fracture parameters.

When the numerical solution is completed, the fracture parameters defined above are obtained using the
commands:

8. /POST1 : General Postproc environment.
9. SET,LAST : Select the last load step.

10. PRCINT,id,Cnode,K1 or JINT : Using the same parameters in steps 2 and 3 (id, J-integral, and/or KI ).

Finally, the fracture parameters are extracted using the command *GET.

11. *GET,Ncrack,CINT,id,NODE,1
12. *GET,Par,CINT,id,CTIP,Ncrack,CONTOUR,iNc

,DTYPE,K1 or JINT

In order to compare the analytical and numerical responses in the linear elastic region, considers the geometry
of Fig. 1, and the material model of Table 1. Where the tensile loading, crack size, and form factor are Fx = 1
kN, ai = 0.2 mm, and Ff = 1, respectively. Also, in this section, we validate why the mesh design is constructed
using concentric circles.
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Foz do Iguaçu, Brazil, November 21-25, 2022



Analysis of the critical crack size and operational factors in tensile armors of flexible pipes

Fig. 2 compares the structural response in terms of the J-integral and KI for two different meshes. The
numerical results of the concentric circles meshing converge to an analytical response. At the same time, the
rectangular mesh does not tend to have a steady value, providing wrong results to the J-integral and KI . For this
reason, the subsequent analyses are defined using concentric circle meshing.

(a)

(b)

Figure 2. Comparison of (a) J-integral and (b) KI response in function of mesh shape

Nc represents the number of contours to be calculated in the contour-integral. The number of contours is a
crucial factor in calibrating the model because there are fluctuations in the fracture parameters, as can be observed
in Fig. 2. These variations can also be easily observed in the elastoplastic regime, as indicated in Fig. 3.

By considering a tensile loading Fx = 42 kN, crack sizes ai of 0.2 mm, 0.4 mm and 0.6 mm, and the same
material of Table 1 with the geometric nonlinearity activated, and geometry of Fig. 1, Fig. 3 shows the convergence
of the J-integral and KI to a stable value from 10th to 20th contours for the flaw sizes ai = 0.2 mm and ai = 0.4
mm. However, more than 15 contours are required to achieve a stable value when the plasticity levels increase.
Moreover, oscillations are more remarkable in the J-integral values than the KI values.

Figure 3. J-integral and KI fluctuations in the function of the number of contours
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5 The failure assessment diagram (FAD)

The failure assessment diagram (FAD) approach based on the BS7910 standard BS [8] can be used to evaluate
how cracks affect structural safety. The diagram encloses two failure mechanisms: the plastic collapse and brittle
fracture. Several essential aspects of the FAD diagram are highlighted in Fig. 4. For example, the abscissa Lr
considers that the failure is due to the plastic collapse ratio, while Kr at ordinate is near the brittle fracture
ratio. The red line represents a failure assessment diagram envelope. It separates the acceptable cracks from
the unacceptable ones. A point over the assessment line (red line) indicates that the wire achieved its maximum
capacity. Also, there is a region in the FAD diagram where the failure modes are mixed.

Failure assessment diagram envelope

Acceptable

Unacceptable

Assessment point

Mixed failure mode

Figure 4. The failure assessment diagram (FAD), adapted from Aboalriha [9]

BS7910 standard BS [8] defined the parameters Lr, and Kr as:

Lrmax =
σy + σu

σy
, (9)

µ = min

(
0.001

E

σy
, 0.6

)
, (10)

N = 0.3

(
1− σy

σu

)
, (11)

Kf (σx) =

(
1 +

1

2

(
σx

σy

)2
)−1/2(

0.3 +
7

10
e
−µ

(
σx
σy

)6
)
, (12)

with
Lr =

σx

σy
, (13)

Kref =


0 for Lr ≥ Lrmax

Kf (σx) for Lr ≤ 1

Kf (σx)
(

σx

σy

)N−1
2N

for Lr > 1 and Lr < Lrmax,

(14)

Kop = σx
√
πaif(ai/h), (15)

and
Kr =

Kop

Kmat
. (16)

where Kmat is the fracture toughness, and it is a material property measured in the Charpy impact test.

6 Case study

This section examines the analytical and numerical approaches presented in the sections 3 to 5. The aim
is to determine the critical crack size and the critical operational factor (the wire’s capacity) through the fracture
parameters and the failure assessment diagram (FAD). This case study, two approaches are studied. The first
considers the crack propagation under constant loading, and, in the other, the variation of the operational loading
with static crack. This case study has the same geometry and material characteristics as the example in section 4
(elastoplastic), but the number of contours is fixed as Nc = 20. The minimum crack size and operational factor
are ai = 0.2 mm and fop = 20% respectively. The operational factor is applied over the yield strength resulting in
the axial stress σx = σyfop.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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The procedure to determine the critical crack size and operational factor consists of incrementing these values
(∆ai and ∆fop, respectively) until the current stress state or the stress intensity factor stays under the assessment
line (limit failure surface). The failure occurs when Kr is greater than Kref . Finally, the analytical responses are
compared with those estimated with ANSYS® for some cases.

The dashed line represents the fracture ratio path when there are increments in the load ratio, as displayed in
Fig. 5(a). This behavior is displayed for the analytical and numerical models. The analytical response in the FAD
diagram has a linear variation for all cases. In contrast, the numerical one has a nonlinear behavior as expected
(physical and geometric nonlinearities activated), showing a more realistic behavior in the stress-strain field at the
crack tip. On the other hand, Fig. 5(b) shows the growth direction of the critical crack size in function of the critical
operational factor for the two approaches.

Analytical

Numerical

Assessment line

Numerical

Analytical

Acceptable

Unacceptable

(a)

(b)

Figure 5. (a) The FAD diagram and (b) crack growth for static flaw size and variable load ratio

Now, consider several crack sizes with a constant operational factor. The aim is to determine the maximum
crack size when a constant operational factor is applied to the armor. In this context, Fig. 6(a) displays that both
the analytic and the numerical solution have a brittle fracture. Fig. 6(b) shows the load ratio tendency as a function
of the crack extension.

Analytical

Numerical

Assessment line

Numerical

Analytical

Acceptable

Unacceptable

(a)

(b)

Figure 6. (a) The FAD diagram and (b) crack growth for constant load ratio and different flaw sizes
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Moreover, in the FAD diagrams of Figs. 6 and 7(a), the maximum critical crack sizes in the analytical solu-
tions are 2.6 mm for the first approach and 3.6 mm for the second one. Furthermore, each crack extension had
a different load ratio of 0.5 and 0.2, respectively, showing an inconsistency in the solutions. Nevertheless, the
numerical solution at the same loading 0.2σy tends to have the identical maximum crack size 2.6 mm, display-
ing convergence in the approaches. However, the maximum crack extensions are outside the assessment line, so
reducing the increasing crack size necessary to improve the solution and stay inside the feasible region.

Although the analytical response converges faster than the numerical one, its answer is overestimated, as the
stress and strain fields in the analytical solution have linear elastic behavior. In contrast, the numerical response
has elastoplastic stress and strain fields. The stress field for the numerical approach is displayed in Fig. 7, which
indicates the different stress levels at the crack tip and the plastic zone for a crack size ai = 2.6 mm and operational
factor fop = 0.2.

Plastic Zone

Figure 7. The axial stress σx at the crack tip, for ai = 2.6 mm and fop = 0.2

7 Conclusions

The numerical solution based on the finite element method agreed well with the analytical response in the
linear elastic region. The mesh around the crack and the number of contours were fundamental to obtaining a
stable solution for the energy release rate (J−integral) and stress intensity factor (KI). In addition, The FAD
diagram based on the BS7910 standard helped to understand the armor capacity for different crack sizes and load
ratios. The pair of points Lr and Kr evaluated on the FAD diagram classified where the tensile armor wire were
safe or unsafe.

The BS7910 standard significantly overestimated the responses calculated. Therefore, the minimal crack
extension should be less than 0.2 mm to obtain solutions accurately. The critical crack sizes in both approaches
were outside the failure limit due to the large crack growth adopted. It means that the critical crack size in the
armor should be less than those found in the analytical and numerical approaches.

The analytical methodology can be used for a fast evaluation and as an overview of the crack size for certain
given load factors. Still, this evaluation should be done carefully, considering the crack extension, the size of the
plastic zone, and the crack tip’s stress and strain levels.
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