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Abstract. Space-Time finite element methods has been developed over years for solving a series of time-dependent
problems like elastodynamics, fluid-structure interaction, fluid flows, advection-diffusion equations and heat trans-
fer problems. The core of this approach is the treatment of time as a dimension of the finite element problem,
leading to space-time finite element discretizations. Single-field or two-fields formulation are possible, where the
first one uses only displacement as unknowns, while the second uses both displacements and velocities as variables.
Some challenges that appear in the Space-Time FEM are the increased size of the equation systems as the precision
in time is increased and the 4D meshes representation. Nevertheless, this approach can lead to higher order accu-
racy in time and direct dynamic spatial re-meshing. On the other hand, time-marching methods are well-known
numerical time integrators that have been applied to discrete systems of differential equations obtained from dif-
ferent spatial discretization techniques, including FEM. Most of them deal with approximations for displacements
and velocities, and the discrete system of differential equations are solved at each discrete time level taking into
account the variable fields from the last time step and the current boundary conditions. Moreover, they can be
formulated to present unconditional stability, to present controlled dissipative properties and different orders of
accuracy. As a disadvantage, dynamic re-meshing procedures are not directly feasible, as it demands the projec-
tion of past time step fields over the new mesh, including projection errors. This work presents a position-based
Space-Time FEM formulation for two-dimensional solids with large displacements, using a total Lagrangian de-
scription. This formulation is naturally isoparametric and designed directly over the large displacement assumption
making the geometric non-linearities intrinsically considered. In order to verify the potential of the formulation, a
comparative analysis with the time-marching method alpha-generalized is carried out.
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1 Introduction

The Finite Element Method is widely employed for structural mechanics with large displacements, with
several important works. Among the important contributions in this field, we can mention Hughes and Carnoy
[1], related to shell elements, Schulz and Filippou [2] related to beam elements in a Lagrangian formulation and
Crisfield [3] related to solid elements. Motivated by the work of Bonet et al. [4], Coda [5] introduces the positional
formulation of the FEM, an alternative approach built over the total Lagrangian description and considering the
current positions as unknowns. This approach has been successfully applied to several static and dynamic problems
as one can see from Carrazedo and Coda [6], Coda and Paccola [7], including structural contact cases [8, 9].
Regarding to solid elements, it produces a more compact equationing than the displacement-based formulation,
and regarding to bars, shells and plates, it avoids rotations as degrees of freedom. Furthermore, the position-based
formulation is naturally and truly isoparametric, since its nodal parameters (unknowns) are the current coordinates
of the solid.

Time-marching methods are well-known time integrators applied to time-dependent spatially discrete sys-
tems of differential equations, which can be obtained with the application of FEM techniques over a continuum
domain. These methods provide approximations in time for displacements, velocities and acceleration. If the
approximations are based on past and current discrete instants the method is explicit and its stability depends on
the adopted time increment (conditionally stable). If the approximation is based on past and future instants, the
method is implicit, and therefore, unconditional stability is possible.

Problems involving impact [9] are a challenge for some very well known second order accurate implicit time
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integrators, such as the Newmark method [10] due to strong nonlinearity and high frequencies. In this sense,
studies have been carried about introducing dissipation over high frequencies preserving the accuracy, such as the
method proposed by Hu [11], that consists in modifying the Newmark optimal parameters, introducing dissipation
in time. Despite being feasible in several cases, as can be seen in Carvalho [8], changing the parameters of the
Newmark method requires very small time steps due to the sensitivity of the numerical damping introduced, which
can generate a phase error and decrease the accuracy. Another possibility is the alpha-Generalized [12] method
that can dissipate high frequencies with a better control over damping in time.

Differently from time-marching procedures, the Space-time (ST) formulations, introduced by Hughes and
Hulbert [13], rellies in the application of the finite element technique over the space-time domain, being the de-
formation of space with respect to time taken into account automatically. This approach has been improved and
applied to a series of time-dependent problems, like linear and nonlinear elastodynamics [14], structural problems
coupled with continuum damage mechanics [15], fluid-structure interaction [16] and fluid flows [17].

Two approaches are possible in ST methods: single-field, where the nodal variables are only displacements,
and two-fields where the nodal variables are both, displacements and velocities. Also, the problem can be stated
from Discontinuous Galerkin method [18] or from Continuous Galerkin method [14]. The numerical accuracy
of ST methods depends only in the choice of the shape functions in time direction, however, increasing shape
functions order in time also increases the system size, that is the biggest challenge of such methods in addition to
the representation of 4D meshes.

In this work, we present a space-time finite element formulation for geometrically nonlinear dynamic 2D
elasticity problems. The applied numerical framework is the Positional Finite Element Method, described briefly
in the sections 2 and 3. This formulation is compared to the α-generalized time marching method in section
section 4 through an example, in order to verify the potential of the formulation. The results and conclusions are
discussed in section 5.

2 Solid mechanics

The state of mechanical equilibrium occurs when the variation in the total mechanical energy functional (Π)
is null, which translates the principle of stationary energy. In this work, the functional Π is composed by the sum of
the potential energy of the external forces (P), strain energy (U) and kinetic energy (K). Therefore, the equilibrium
is expressed in variational form and under a total Lagrangian description as

δΠ = −
∫

Γ0

q · δy dΓ0 −
∫

Ω0

b · δy dΩ0︸ ︷︷ ︸
δP

+

∫
Ω0

S : δE dΩ0︸ ︷︷ ︸
δU

+
1

2

∫
Ω0

ρ0ÿ · δy dΩ0︸ ︷︷ ︸
δK

= 0, (1)

where q and b denote conservative forces distributed along the initial surface Γ0 and the initial volume Ω0, respec-
tively, ρ0 is the initial density, y denotes the current position vector, S is the second Piola-Kirchhoff stress tensor,
and E is the Green-Lagrange strain, defined as

E =
1

2
(AT ·A− I), (2)

with A denoting the deformation gradient, and I the identity tensor.
The second Piola-Kirchhoff stress is the energetic conjugate of E, and can be defined as S = ∂ue/∂E, in

which ue is the strain energy density, defined by the constitutive model of the material. In this work, we apply the
Saint-Venant-Kirchhoff constitutive model, written as:

ue =
1

2
E : C : E, (3)

where C is a fourth order constitutive elastic tensor, defined by C = ∂2ue

∂E⊗∂E = ∂S
∂E , so that the second Piola-

Kirchhoff stress tensor can be written as S = C : E.

3 Position-based space-time finite element solution

The discrete space-time domain can be represented by Qh ≡ Ωh0 × Ih, where Ωh0 is the initial discrete spatial
domain, Ih = (0, T ) is the discrete time domain and T the final instant. Following works like [15] and [18], we
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subdivide the time domain to generate space-time slabs. The nth space-time slab is given by Qhn ≡ Ωh0 × Ihn , with
boundary γhn ≡ Γh0 × Ihn , where Ihn = [tn, tn+1]. In turn, each discrete space-time slab Qhn is partitioned into nel
space-time elements Qe with a set of nstnd space-time nodes, so that Qhn =

⋃nel

e=1Q
e.

The strong form of governing equations for a continuum space-time domain is:

∇x ·PT + b0 = ρ0ÿ in Q ≡ Ω0 × I, (4)
y(x, t) = ȳ(x, t) on γD ≡ ΓD0 × I, (5)

PT · n0 = t0(x, t) on γN ≡ ΓN0 × I, (6)
y(x, 0) = y0(x) in x ∈ Ω0, (7)
ẏ(x, 0) = ẏ0(x) in x ∈ Ω0, (8)

where ∇x · (•) denotes the Lagrangian divergence of (•), P is the first Piola-Kirchhoff stress tensor, b0 is the
body force in the initial spatial configuration, ρ0 is the initial mass density, ẏ is the velocity field. The dots
superscript represents time derivatives. The functions ȳ(x, t) and t0(x, t) are the prescribed position and traction
over Dirichlet (γD) and Neumann (γN ) boundaries, respectively. The vector n0 is the unit outward normal vector
to the boundary ΓN0 .

The first variation of total mechanical energy can be written by multiplying Eq. (4) by a variation of current
position δy, integrating over space-time domain and making use of the divergence theorem, resulting:

δΠ(y, t) =

∫
Qn

ρ0ÿ · δyh dQ+

∫
Qn

S : δE dQ−
∫
Qn

b0 · δyh dQ−
∫
γN
n

t0 · δyh dγ = 0. (9)

We consider the meshes to be structured in time direction to ensure the subdivision into time-slabs, which
allows each space-time element to be generated by a Cartesian product of spatial and temporal finite elements
space of functions. In 2D case, it is easy to visualize the parametric cubic space formed by (ξ1, ξ2, θ), so that the
space-time shape functions N are constructed as follows:

N(ξ1, ξ2, θ) = Ψ(θ)⊗ϕ(ξ) (10)

where⊗ denotes tensor product,ϕ(ξ) are the spatial discretization shape functions, obtained with 6 nodes triangles
(quadratic Lagrange polynomials) in this work, and Ψ(θ) are the temporal shape functions, obtained in this work
with one line element with Hermitian cubic polinomials [19]. This approach allows the following approximations:

yh(ξ, θ) = N(ξ, θ) ·R, (11)
ẏh(ξ, θ) = Ṅ(ξ, t) ·R, (12)

where R =
[
Y V

]
is the space-time vector of nodal unknowns with position components Y β and velocity

components V β for each β space-time node.
From now, the fully discrete form of the problem is given by:

−
∫
Qh

n

NT · b0 dQ−
∫

(γN )hn

NT · t0 dγ +

∫
Qh

n

ρ0N
T · N̈ dQ ·R +

∫
Qh

n

Sh :
∂Eh

∂R
dQ = 0. (13)

Eq. (13) represents a nonlinear system, that is solved by Newton-Raphson method.
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4 Numerical example:

A numerical example is simulated in order verify the potential of proposed STFEM formulation through
a comparative analysis with alpha-generalized method [12]. These method is a more general time integrator,
characterized by performing the integration of time in an intermediate instant ‘s + 1 − α’, where the variables
are calculated in terms of previous and current values by the linear interpolation. By taking specific α values, the
equilibrium equation is evaluated purely on the current time step, falling back to the traditional Newmark integrator
[10], as was done in this work.

The problem consists of a cantilever beam subjected to a suddenly and constant load F = 5.0kN at point
A, as shown in Fig. 1. The material is modelled with the Saint-Venant-Kirchhoff constitutive model, with the
following parameters: E = 210.0MPa; ν = 0.0 and; ρ0 = 1691.81kg/m3. The spatial mesh tested is composed by
24 T6-elements and the time intervals analized are ∆t = 1.0× 10−5 s and ∆t = 1.0× 10−6 s, for both methods.
Time intervals with order higher than those ones (∆t = 1.0 × 10−4 s) were also analyzed. However, the answers
diverged when using the Space-time method under these conditions. The results are shown in Figs. 2 and 3.

Figure 1. Cantilever beam with suddenly load at free end (point A).
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Figure 2. Displacement in a vertical direction at point A versus time for ∆t = 10−5.
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Figure 3. Displacement in a vertical direction at point A versus time for ∆t = 10−6.

5 Conclusion

The present Space-Time Positional FEM formulation is current position-based and, for this reason, is natu-
rally and truly isoparametric. By employing cubic Hermitian polynomials, nodal velocities can be directly related
with position approximations. The results from section section 4 compared the ST formulation with time-marching
alpha-Generalized method in an analysis using finite element method in a geometrically nonlinear dynamic prob-
lem. It can be seen that for nonlinear problems such as the beam shown, both methods are equivalent in terms
of displacement response for specific time intervals and get closer as the time interval decreases. However, the
fact that our Space-time formulation approximates positions with high-order approximation in time (Hermitian
functions) makes the problem conditionally stable, requiring small time intervals in the analyses and increasing
the processing time (the results diverged with high time intervals). Thus, it is concluded that the ST formulation
should gain strength and advantage over the alpha-Generalized in problems with high nonlinearity, such as con-
tact/impact problems. In these types of problems, the alpha-Generalized integrator is more challenging, due to
strong nonlinearity and high frequencies, and the ST formulation can be more stable despite longer processing
time. As suggestions for future work, the potential of the ST formulation should be verified for contact/impact
problems. Besides, it can be evaluate if worth use other temporal shape functions.
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