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Abstract. Computational tools applied to the teaching and learning of structural analysis have been increasingly
developed and improved to optimize computational time and cost. The method to solve the analysis, the language
to be chosen, the organization of the algorithm, as well as the programming paradigm adopted, are factors that
must be taken into account in numerical analysis. Thus, this paper aims to study the behavior of 2D and 3D trusses
in the linear-elastic range using a code developed with Fortran programming language, showing the importance
of computational application and numerical methods in civil engineering. To solve this problem, the bar finite
element formulation was used. Three different benchmark examples were analyzed and verified with a commercial
software, one plane truss and one space truss. The results of these structures in stresses and displacements were
compared with MASTAN2, proving the efficiency of the built algorithms to solve the studied problems.
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1 Introduction

The advancement of technology and the development of numerical methods have been gaining more and
more space in the field of structures, both in engineering offices and in pedagogical education. Among the main
reasons that can be highlighted are the use of open source, the possibility of greater cooperation and integration
between projects and disciplines, the versatility of the code, and the greater security for the proposed solutions. In
this context, the computationally implemented finite element method (FEM) becomes a powerful tool with wide
application in Structural Engineering. This method proposes to simulate the behavior of a real structure through a
geometrical discratization of the proposed problem, where the results can be approximated numerically [1].

Trusses are an example of a structure widely used in civil construction and easy to implement numerically.
This type of system is a viable solution for large spans due to its: high stiffness with reduced weight; high degree
of hyperasticity with excellent effort redistribution; and easiness of transport and assembly. According to Martha
[2], both plane and space trusses are considered reticulated structures, i.e., the bars are designed only to work under
axial tensile and/or compression forces.

Thus, this work aims to study the behavior of 2D and 3D trusses in the linear-elastic range using a code de-
veloped with the FORTRAN programming language. Consequently, the importance of computational application
and numerical methods in educational practice is shown, using finite element method.

2 Finite element formulation for trusses

The proposed problems are solved through the adoption of bar elements, using a computational routine in
FORTRAN based on the Displacement Method. To analyze these systems, it is necessary to: define the element
associated with the problem and the global reference system, identify the members by name and their respective
connectivity, and specify the material properties and their cross-section.

With these predefined data and knowing the restrictions of the degrees of freedom (DOF), it is possible to
calculate the stiffness matrix and the load vector of each element. Therefore, by applying the boundary conditions
and solving the equilibrium equation, the generalized displacements of the nodes are obtained and the stresses on
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the members are calculated. In the following subsections, the formulation for plane (2D) and space (3D) trusses
will be detailed.

2.1 Plane trusses

To formulate the equilibrium equation, the simple example of the spring can be used, mainly because this
element only transmits axial forces as well as trusses. Consider a spring subjected to an external pulling force (F).
Note that the internal force of the spring can be expressed by the product of the stiffness coefficient (k) and the
displacement (u), thus, defining the generic equilibrium equation ku = F (see Filho [3]).

According to Filho [3], analogous to the spring problem, the generic equilibrium equation can be extended
to plane truss bars, according to the scheme in Fig. 1, where the coefficient k is the axial stiffness of the bar with
k = EA/L.
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Figure 1. Plane truss bar equilibrium diagram

Filho [3] and Soriano [4] detail the procedures and equations described below related to the Displacement
Method. In summary, a unitary and positive displacement is applied at node “i”, i.e., uL

i = 1 and the node “j” is
blocked. Thus, the load that causes the displacement (FxL

i ) and the respective reaction in “j” (FxL
j ) are given by

the set of expressions in eq. (1).

FxL
i = EA

L uL
i = EA

L = kii; FxL
j = −EA

L = kji (1)

Applying a positive unit displacement at node “j” and blocking node “i”, in the same way as shown in
eq. (1), the terms kjj and kij are obtained. Therefore, a generic term kij indicates the action of node “i” due to a unit
displacement at node “j”. As stated by the theorems of Betti and Maxwell kij = kji, where kii and kjj are always
positive. Hence, the set of expressions in eq. (2) express a general case of forces FxL

i and FxL
j , and displacements

uL
i and uL

j .

FxL
i = −EA

L ∆Li = −EA
L

(
uL

j − uL
i

)
; FxL

j = −EA
L ∆Lj =

EA
L

(
uL

j − uL
i

)
(2)

This can also be expressed in matrix form, according to eq. (3).

EA
L

 1 −1

−1 1

 ·

uL
i

uL
j

 =

 kii kij

kji kjj

 ·

uL
i

uL
j

 =

FxL
i

FxL
j

 (3)

Since truss elements only transmit axial forces, and no forces or displacements acting in the yL direction, the
matrix expression that represents the equilibrium of bars can be described by eq. (4) when referring to local axes.
Where uL

i and vL
i are displacements on the x-axis and the y-axis.

EA
L


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 ·


uL

i

vL
i

uL
j

vL
j

 =


FxL

i

0

FxL
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0

 (4)
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Similar to the generic expression ku = F, one can write the matrix equilibrium equation for plane truss
elements (eq. (4)) in a compact form, as presented in eq. (5), where m indicates the number of the bar, L represents
the local system, and K

˜
,U
˜

and P
˜

are the stiffness matrix, displacement vectors, and forces respectively. (see

McGuire et al. [5]).

K
˜

m,L
U
˜

m,L
= P

˜

m,L
(5)

The stiffness matrix of an element is normally obtained in the local coordinate system, as well as the nodal
forces. However, while results from the equilibrium equation are given in the global reference system. Therefore,
it is necessary the rotation of the axes as shown in Fig. 2, whose formulation is established by Soriano [4].
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Figure 2. Rotation of axes in the plane, adapted from Soriano [4]

As shown in Fig. 2, the vector u⃗ is considered in the XY (global) and xy (local) references, according to eq. (6).

ux

uy

 =

 cosα sinα

− sinα cosα

 ·

uX

uY

 (6)

The rotation matrix (r
˜
) and its respective expansion (R

˜
) for plane trusses are indicated in eq. (7), which is

described in nodal partitions [4, 5].

r
˜
=

 cosα sinα

− sinα cosα

 → R
˜
=

r
˜

0
˜

0
˜

r
˜

 (7)

Finally, using the rotation K
˜

m,G
= R

˜

T
K
˜

m,L
R
˜

, according to the procedure indicated by Soriano [4] and McGuire

et al. [5], the global stiffness matrix of plane trusses (eq. (8)) is obtained.


Fx1
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Fx2

Fy2

 =
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L


cos2 α sinα cosα − cos2 α − sinα cosα

sinα cosα sin2 α − sinα cosα − sin2 α
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 (8)

2.2 Space trusses

Space trusses (3D) are defined by the Cartesian coordinate system (x,y,z) and their bars and loads can be in
any direction in space. Taking eq. (4) as a reference, and knowing that space truss elements also only transmit
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axial forces (there are no forces or displacements acting on the yL and zL axes), the matrix expression of eq. (9) is
defined. It represents the equilibrium equation for space truss bars, referring to local axes, or in a compact form as
already demonstrated in eq. (5). Where wL

i is displacements on the z-axis.
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(9)

The rotation matrix r
˜

is defined in three-dimensional space with its lines referring to the directional cosines

of the x, y, and z axes, as indicated in eq. (10) [4]. The y-axis directional cosines are illustrated in Fig. 3.

r
˜
=


λxX λxY λxZ

λyX λyY λyZ

λzX λzY λzZ

 . (10)
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Figure 3. Rotation of axes in three-dimensional space, adapted from Soriano [4]

The x-axis passes through the initial (i) and final (j) nodal points of the bar of coordinates (Xi,Yi,Zi) and
(Xj,Yj,Zj). Thus, the directional cosines of each axis are given by eq. (11), as proposed by Soriano [4].

λxX =
Xj − Xi

L
, λxY =

Yj − Yi

L
, λxZ =

Zj − Zi

L
(11)

where L defines the length of the bar, expressed by eq. (12).

L =

√
(Xj − Xi)

2
+ (Yj − Yi)

2
+ (Zj − Zi)

2 (12)

Therefore, the rotation matrix R
˜

for space trusses (dimensions 6x6) is defined in a compact form in eq. (7),

using the rotation matrix r
˜

of three-dimensional space (eq. (10)). Again, applying K
˜

m,G
= R

˜

T
K
˜

m,L
R
˜

, the global

stiffness matrix for space trusses (eq. (13)) is obtained.
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K
˜

m,G
=

EA
L



λ2
xX λxXλxY λxXλxZ −λ2

xX −λxXλxY −λxXλxZ

· λ2
xY λxYλxZ −λxYλxX −λ2

xY −λxYλxZ

· · λ2
xZ −λxZλxX −λxZλxY −λ2

xZ

· · · λ2
xX λxXλxY λxXλxZ

· · · · λ2
xY λxYλxZ

Sim· · · · · λ2
xZ


(13)

3 Numerical examples

In this chapter, two problems were proposed: a plane truss and a space truss. The solution was developed
computationally in FORTRAN language, following the formulation detailed in the previous chapter.

3.1 Plane Truss

The routine for plane trusses was tested with the Warren truss shown in Fig. 4. The structure has width
L = 10.5m, height H = 3m and elastic modulus E = 200GPa. Table 1 indicates the cross-sectional area of the
bars.
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X

Y
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Figure 4. Warren truss

Table 1. Cross sectional areas of the members of the Warren truss

Group Member number Area (m2)

Inferior chord 1, 6 e 10 0.0060
Diagonals 2, 3, 4, 7, 9, 11 0.0040
Superior chord 5 e 8 0.0080

Initially, to use the FORTRAN routine, it is necessary to build a data input file in .txt format, containing the
material properties, including its geometry, the connectivity vector, the relationship that informs the number of
bars connected, and the coordinate vector.

Next, the program must be informed of the boundary conditions. In this example, it was applied to nodes
1 and 7 movement restrictions in the X and Y directions, imposing zero value. As for the loading, two 150kN
loads were applied vertically downward at nodes 3 and 5. In the computational routine developed, the vectors and
matrices must have the appropriate dimensions for the plane truss solution, considering two degrees of freedom
per node, i.e., K ∈ R14x14 e F, P ∈ R14x1. The allocation of the individual stiffness matrix of each member in
the global stiffness matrix is done by the “do” command. This creates a loop that traverses the rows and columns
of the matrix, adding the corresponding degree of freedom portion.

After the processing of eq. (8), the support reactions (VX and VY) were equal at nodes 1 and 7, since the plane
truss structure and the load’s application are symmetrical. The results obtained by the FORTRAN code resulted
in VX = 116.67kN and VY = 150.00kN at the support points. As for the axial forces in the bars, the results
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obtained were compared with the software MASTAN2, which has its formulation based on McGuire et al. [5].
Table 2 shows the results of both analyses for the Warren truss. Note that the results obtained were identical in
both analyses, except for the diagonal bars 2, 3, 9, and 11. There was a divergence of only 0.02%.

Table 2. Axial forces of the plane truss bars

Member number FORTRAN (kN) MASTAN2 (kN) Member number FORTRAN (kN) MASTAN2 (kN)

1 -29.17 -29.17 7 0.00 0.00
2 -173.66 -173.70 8 -175.00 -175.00
3 173.66 173.70 9 173.66 173.70
4 0.00 0.00 10 -29.17 -29.17
5 -175.00 -175.00 11 -173.66 -173.70
6 58.33 58.33 - - -

3.2 Space Truss

The proposed space truss was a 25-bar electricity transmission tower, presented by Ribas [6] (Fig. 5). The
structure has elastic modulus E = 210GPa, cross-sectional area of the bars A = 0.0016m2, height H = 5m, and
length L = 1.9m. Motion constraints were applied in the three main directions (X,Y, and Z). As for the loading,
those present in Tab. 3 were considered.
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Figure 5. Electricity transmission tower

From the plane truss formulation, the vectors and matrices must be expanded in the computational routine, as
shown in the 3D truss formulation in Chapter 2. Furthermore, it should be noted that for allocation in the global
stiffness matrix, the “do” loop must be modified from the value 4 to 6, because each space truss bar has 6 degrees
of freedom. The results obtained in the numerical method were also compared with the software MASTAN2, as
shown in Tab. 4. It can be seen that the values obtained in the support nodes are identical.

Finally, Tab. 5 presents the axial forces in each bar of the electricity transmission tower. The largest variation
found between the FORTRAN and MASTAN2 values was 0.03%, thus verifying the results obtained.
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Table 3. Total loads of the electricity transmission tower (kN)

Nós X Y Z

1 4.48 135.57 -44.84
2 0.00 135.57 -44.84
3 2.24 0.00 0.00
6 2.24 0.00 0.00

Table 4. Support reactions of the space truss

FORTRAN (kN) MASTAN2 (kN)
Nós X Y Z X Y Z

7 131.82 -82.47 154.63 131.82 -82.47 154.63
8 -136.31 -87.86 161.35 -136.31 -87.86 161.35
9 96.41 -47.71 -109.79 96.41 -47.71 -109.79

10 -100.89 -53.10 -116.51 -100.89 -53.10 -116.51

Table 5. Axial forces of the space truss bars

Member number FORTRAN (kN) MASTAN2 (kN) Member number FORTRAN (kN) MASTAN2 (kN)

1 8.60 8.60 14 -45.66 -45.66
2 -91.29 -91.29 15 31.98 31.98
3 -87.42 -87.42 16 -48.59 -48.59
4 68.71 68.71 17 29.05 29.05
5 72.57 72.57 18 -85.79 -85.79
6 -143.54 -143.54 19 -86.54 -86.54
7 107.68 107.70 20 68.38 68.38
8 -140.39 -140.40 21 67.63 67.63
9 110.83 110.80 22 138.29 138.30

10 2.87 2.87 23 -166.19 -166.20
11 4.69 4.69 24 -172.43 -172.40
12 21.16 21.16 25 132.06 132.10
13 -20.33 -20.33 - - -

4 Conclusions

The diffusion of knowledge involving linear static analysis, through the finite element method of truss struc-
tures, is extremely relevant for academic students and engineers. However, in order to solve problems of large
variables or various complexities, it is recommended to implement FEM numerically to optimize time and process.

Thus, this work developed a code in FORTRAN language using the FEM formulation for truss bars. The
computational routines were applied to two problems: a plane truss and a space truss. In summary, the results
obtained were satisfactory in both problems, with a maximum variation of 0.03% in relation to MASTAN2.
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[6] H. S. Ribas. Projeto Ótimo da Geometria de Treliças Espaciais. Master’s thesis, Federal University of Rio
Grande do Sul, 1980.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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