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Abstract. Of the many techniques and tools used for estimating oil and gas production in the recovery processes, 

compositional simulation model is important for problems with complex phase behavior, as in the application of 

Enhanced Oil Recovery (EOR) methods. The solution of the compositional model involves spatial and time 

discretization schemes and approaches for handling the coupling of fluid flow and phase behavior. Several solution 

algorithms arise from combining the different selection of primary variables and decoupling techniques. In this 

work, we present a Fully Implicit (FI) formulation using cartesian grids for the compositional reservoir simulation 

based on Equation of State. For the diffusive terms of the equations that describe the mathematical model, we 

discretize by the Two-Point Flux Approximation (TPFA) finite volume method, while in the advective terms, we 

apply the first-order upstream weighting. So far, the implemented model considers isothermal flow, up to three-

phase flow, and that there is no mass transfer between water and hydrocarbon phases. Physical dispersion and 

capillary pressure effects are neglected. Our FI formulation is evaluated by solving a benchmark problem found 

in literature and the results are promising, providing a basis for future implementation of a non-isothermal model 

to simulate EOR problems, such as steam injection. 
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1  Introduction 

Numerical modeling of multiphase and multicomponent fluid flow is an important factor in the oil industry, 

especially for predicting oil and gas production, allowing field optimization and uncertainty assessment. In this 

context, efforts have been dedicated to the development of increasingly accurate and physically consistent models 

(Fernandes et al. [1]). The Black-oil model, widely used in the oil reservoir simulation industry, assumes that the 

reservoir fluids consist of an explicit water phase and only two hydrocarbon pseudo-components, distributed in an 

oil phase and a gas phase. The need for compositional models arises especially whenever dealing with volatile oil 

and gas condensate depletion and with Enhanced Oil Recovery (EOR) process (Chang et al. [2]). In those complex 

cases, simpler models such as the Black-oil are not suitable.  

To numerically solve the large system of nonlinear equations of the compositional models, several 

approaches are presented in literature, ranging from the choice of primary variables to the level of coupling of the 

equations. The numerical formulations of reservoir models can be classified as: IMPES (Implicit Pressure, Explicit 

Saturations), IMPSAT (Implicit Pressure and Saturations), AIM (Adaptive Implicit Method), and FI (Fully 

Implicit) (Fernandes [3]). Among the Fully Implicit approaches presented in literature, we can highlight two classic 

formulations: natural variables proposed by Coats [4], and the global variables approach proposed by Collins et 

al. [5]. In this work, we use the formulation proposed by Collins et al. [5], which uses pressure and global 

compositions as primary variables. In this formulation, the stability tests and flash procedures are made separately, 

after computing the primary variables. This decoupling performed by Collins et al. [5] is worthwhile due to the 

flexibility of having the flash problem completely independent of the material balance equations, allowing a 
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specific approach to the treatment of fugacity equations (Santos [6]). besides, it allows a quick expansion to non-

isothermal problems, one of the future goals to be achieved in this research. In the present paper, we use this 

formulation with the finite volume method using a Two-Point Flow Approximation (TPFA) scheme for the 

discretization of the diffusive terms, and the first-order upstream weighting for the advective terms. 

2  Mathematical Model 

The equations that govern the multiphase and multicomponent fluid flow in porous media are: the equation 

of the conservation of the mass for the components, the pore volume constraint, the correlations to describe the 

fluid properties and thermodynamic equilibrium constraints (Fernandes [3], Santos [6]). The phase velocities are 

evaluated with the Darcy’s law. Besides, in this work, we make the following simplifying assumptions: The whole 

domain is isothermal, there is no mass transfer between the water phase and any of the hydrocarbon phases, local 

thermodynamic equilibrium is considered and physical dispersion and capillary pressure effects are neglected. The 

final mathematical model is shown in eq. (1), eq. (2), eq. (3), eq. (4) and eq. (5) below: 
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where 𝑉𝑏 is the bulk volume, 𝑁𝑘 is the number of moles of component k, 𝑆𝑗 , 𝜉𝑗 , 𝜇𝑗 , 𝑘𝑟𝑗, 𝑛𝑗 and 𝜌𝑗 are, respectively, 

the saturation, the molar density, the viscosity, the relative permeability, the number of moles and the mass density 

of the phase j, 𝑥𝑘𝑗  and 𝑓𝑘𝑗 are, respectively, the molar fraction and the fugacity of the component k in the phase j, 

𝑞𝑘 is the molar rate of the component through the well, K is the permeability tensor, P is the pressure of the 

reference phase, taken here as the oil phase, D is the depth, g is the gravity acceleration, 𝜙 is the porosity, 𝑛𝑝 is 

the number of phases, including water, and 𝑛𝑐 is the number of hydrocarbon components present in the system. 

Molar, mass densities and fugacity are calculated by the Peng-Robinson Equation of State (Peng and 

Robinson [7]). To treat the phase appearance and disappearance, the phase stability tests are performed using the 

stationary point location method (Michelsen [8]), followed by flash calculations, using the Whitson-Michelsen [9] 

adaptation of the correlations of Rachford-Rice (Rachford and Rice [10]) to include for negative flash calculations. 

3  Fully Implicit Formulation 

Several numerical formulations are proposed in literature for the solution of the fluid flow model. In this 

work, we adopt the fully implicit formulation proposed by Collins et al. [4], in which eq. (1) and eq. (2) are solved 

simultaneously for all control volumes, resulting in a system with (𝑛𝑐 + 2)𝑛𝑏 equations, formed by: 𝑛𝑐 + 1 mass 

conservation equations for the hydrocarbon components and water, and a pore volume restriction equation, where 

𝑛𝑏 is the number of control volumes. We used the Finite Volume Method with Two-Point Flux Approximation 

(TPFA) to discretize the diffusive terms. For the flux terms, we discretize the advective flow by the first-order 

upstream weighting. To approximate the permeability terms at every control surface, we use the harmonic mean. 

Since we are using a fully implicit formulation, for the time integration, we apply the Backward Euler scheme. To 

solve the nonlinear system, the Newton-Raphson method is implemented. Considering an arbitrary control volume 

P of a cartesian uniform grid and 1-D fluid flow (x-direction), eq. (1) and eq. (2) can be discretized and written in 

residual form, as follows: 
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where 𝑅𝑖
𝑀 and 𝑅𝑉 are the residual of the mass conservation equation of component k and of the pore volume 

constraint, respectively, the superscript n represents the previous time level, n + 1 the current time level and Δ𝑡 is 

the time step between the intervals n + 1 and n. In the Fully Implicit method, all properties are evaluated at the 

current time level. Moreover, 𝐹𝑘𝑗,𝑒
𝑛+1 e 𝐹𝑘𝑗,𝑤

𝑛+1 are the flow of component k in phase j through the right and left faces, 

respectively, given by:  
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where the E and W subscripts stand for the right and left volumes of the control volume P. Besides, the e and w 

subscripts indicate the face shared by the volumes P and E and the volumes W and P, respectively, and A is the 

face area. 

To solve the nonlinear system of equations, the Newton-Raphson method is used considering the pressure 

and the total number of moles as primary variables, following the approach from Collins et al. [4]: 

 ( )
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where Δ�⃗�𝑙
𝑛+1 are the changes in the primary variables, �⃗⃗�𝑙

𝑛+1 are the residues and 1n

lJ +  is the Jacobian matrix at 

iteration l. For a 1D problem, eq. (10) is illustrated below: 
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where, an entry (i.e., the submatrix) of the Jacobian matrix for an arbitrary control volume is given by: 
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After solving the system of eq. (10), the primary variables are updated by: 
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then the secondary variables are updated and the process is repeated until convergence is reached in the Newton-

Raphson method. After that, the time advance continues until the end of the simulation. 

4  Results 

In order to evaluate our formulation and verify our implementation, in this section, we present a simulation 

of the classical two-phase flow problem proposed by Buckley-Leverett [11], which consists of a 1-D flow of water 

and oil in a petroleum reservoir. Although the system can handle up to three-phases in equilibrium, in this section 

we describe the solution of the two-phase problem to evaluate a good part of the framework under development, 

as well as being a problem with a semi-analytic solution. Initially, the reservoir contains 0.2 water saturation and 

0.8 oil saturation composed of an n-decane component, with a water injection well at the left extreme side and a 

production well at the right extreme of the reservoir. The reservoir has a unit dimension L = 1 m along the x-

direction, where the flow is considered. The porosity is 𝜙 = 0.2, the permeability is 𝐾𝑥 = 500 mD, the initial 

pressure is 𝑃0 = 13.79 MPa throughout the reservoir and temperature is constant at 288.71 K, with M = 20 being 

the mobility ratio between oil and water. Water injection rate is 𝑞𝑤 = 2.83e-3 m³/day and the Bottom Hole Pressure 

(BHP) at the producer well is 𝑃𝐵𝐻𝑃  = 13.79 MPa. The relative permeability model used was that of Corey [12], 

whose parameters are shown in Tab. 1, as well as the values of residual saturations. The properties of the n-decane 

component are shown in Tab. 2. 

Table 1. Relative permeability data 

Parameter Nomenclature Value 

End point relative permeabilities 𝑘𝑟𝑤
0  and 𝑘𝑟𝑜

0  0.2 and 1.0 

Exponents 𝑒𝑤 and 𝑒𝑜  2.0 and 2.0 

Residual saturations 𝑆𝑤𝑟  and 𝑆𝑜𝑟  0.2 and 0.35 

Table 2. N-decane component data 

Property Value 

Critical pressure (MPa) 2.11 

Critical temperature (K) 619.28 

Critical molar volume (m³/kmol) 0.603 

Molar weight (kg/kmol) 142.28 

Acentric factor 0.4890 

The results of the simulation are obtained for 0.20 Pore Volume Injected (PVI). We compared our solutions 

with the semi-analytical solution (Buckley-Leverett [11]). Figure 1 shows the convergence study for meshes with 

8, 16, 32, 64, 128, 256, and 512 control volumes (CV). We can observe a good agreement with the semi-analytical 

solution as we refine the mesh, despite the numerical diffusion introduced by the upstream first-order weighting 

method. In order to evaluate the accuracy of our results, we have used the L1 norm of the error, and as shown in 

Tab. 3, our implementation converges to the semi-analytical solution. The convergence behavior is illustrated in 

Fig. 2, where we can observe a good performance compared to linear convergence. 
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Figure 1. Water saturation obtained for the FI method compared to the semi-analytical solution 

Table 3. Error norm and convergence rates 

Control volumes 𝐿1𝑒𝑟𝑟𝑜𝑟  𝐿1𝑟𝑎𝑡𝑒 

8 0.06308 - 

16 0.04842 0.3816 

32 0.03020 0.6809 

64 0.01938 0.6399 

128 0.01181 0.7148 

256 0.00529 1.1572 

512 0.00386 0.4559 

 

 

Figure 2. Error norm variation with number of cells 

 

5  Conclusions 

In the present work, we show a FI formulation proposed by Collins et al. [5] for modeling compositional 

flow in petroleum reservoirs, based on the Equation of State of Peng and Robinson [7], which uses pressure and 

global compositions as primary variables. To validate our formulation and assess its accuracy, we compared our 

results with the semi-analytical solution of a classical problem in literature. Our results are very promising and in 

the near future we intend to apply them to more complex problems, simulate two-dimensional problems, and 

implement the non-isothermal model to simulate Enhanced Oil Recovery problems, such as steam injection, using 

a novel method for the flash calculations proposed in literature. Furthermore, in the long term, we intend to extend 

this work to general polygonal and polyhedral unstructured meshes. 
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