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2Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM)
Av. Beira-mar, s/n, Pontal do Paraná, 83255-976, Brazil
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Abstract. Models are mathematical representations capable of describing phenomena in different scenarios. Usu-
ally, two or more models are available for the same phenomenon, which leaves the choice of the most suitable
model to the user. In practice, simplified models can be as precise as more refined ones and, simultaneously, less
demanding in terms of computational power. In this work, we present a novel approach for measuring the discrep-
ancy between models when considering the randomness of the variables. We first define a uniformly distributed
random variable that chooses which model is employed to evaluate the response. A global sensitivity analysis
(GSA) is then performed by determining Sobol’ total index of the response with respect to this variable. The result
reveals the importance of choosing between one model or another and indicates the level of discrepancy between
them in the stochastic context. Two numerical examples are presented, indicating the kind of insight the proposed
approach produces.
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1 Introduction

Two or more models are usually available to represent a particular phenomenon, which leaves analysts with
the question of which model to choose to achieve efficient and precise analysis. Hence, the model choice is an
important question when dealing with the mathematical representation of phenomena. Establishing comparison
approaches that measure how discrepant two or more models are is essential. In this work, we address the problem
of model comparison considering variables’ uncertainty to support decision making, i.e. we aim to determine if
the discrepancy between models is significant concerning input randomness.

Although employing different approaches, mathematical model comparison has been the subject of study in
almost every field of science, as seen in Bauer and Tyacke [1], Heywood and Cheng [2], Vorel et al. [3] and Allen
et al. [4]. Comparison of regression models to empirical data and stochastic model comparison are often contexts
to which the term “model comparison” refers.

Here, the proposed approach is cast in the global sensitivity analysis (GSA) framework [5] by defining a
random variable that chooses which mathematical model is employed to evaluate the response. Sobol’ total index
[6] is then determined, which indicates the importance of model choice to the response obtained and the level of
discrepancy between the models.

The rest of this paper is organized as follows. The next section briefly presents a review of GSA and Sobol’
indices concepts. The proposed approach for models comparison is then presented in section 3, while section 4
demonstrates two numerical examples of model comparison. Finally, conclusions are discussed in the last section.

2 Variance-based global sensitivity analysis

Sensitivity analysis (SA) refers to quantifying the importance of each input parameter to the output of a
model. It allows to determine how uncertainty in the output can be attributed to different sources of uncertainty
in the model input [7]. See Borgonovo and Plischke [8], Iooss and Lemaı̂tre [9] and Silva and Ghisi [10] for a
comprehensive review of SA methods and their capabilities.
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Here we employ variance-based GSA, which measures the importance of an input variable according to
the expected reduction of the output variance by fixing this variable. Consider the response Y = f(X), where
f : Rm → R is the mathematical model and X ∈ Rm is the vector of input variables. Sobol’ first order sensitivity
index (Si) concerning random variable Xi is defined as [6]

Si =
Vi(Y )

V(Y )
=

V [E [Y |Xi]]

V(Y )
(1)

where E [.] and V [.] represent the expected value and variance, respectively, while E [Y |Xi]] is the expected value
of Y conditioned to Xi.

Sobol’ first order indices do not measure the effect of interaction between variables, which may be significant
depending on the model and the analysis context. Saltelli et al. [5] mention the factor fixing context, in which one
employs GSA to determine whether an input variable is unimportant. In these cases, Sobol’ total index (STi

) is
preferred since it includes interaction effects between variables. Sobol’ total index is given by [5]

STi
= 1− V [E [Y |X∼i]]

V [Y ]
(2)

where V [E [Y |X∼i]] is the expected value Y conditioned to all variables but Xi.

3 Approach for model comparison

The following strategy is employed to compare the mathematical models f1, f2, ..., fm using GSA framework
presented previously [11]. Consider the random variable W with discrete uniform distribution and mass function

p(w) =



1/m, if w = 1

1/m, if w = 2
...

1/m, if w = m

(3)

The response Y is defined as

Y = f(X,W ) =



f1(X), if w = 1

f2(X), if w = 2
...

fm(X), if w = m

(4)

Therefore, the response Y equals the model fi(X) according to the realized value of W , which is determined
randomly with a probability of 1/m. Thus, the variable W is employed to select one of the m models to evaluate
the response.

We can apply the global sensitivity analysis from this definition to determine how significant the model choice
is to the response obtained. The Sobol’ total sensitivity index of Y with respect to W is given by

STW
= 1− V [E [Y |X∼W ]]

V [Y ]
(5)

The index STW
represents how much reduction of V [Y ] would be achieved, on average, by fixing W . A

small STW
means that W has little impact on V [Y ], and thus f1, f2, ..., fm can be considered similar. On the other
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Foz do Iguaçu, Brazil, November 21-25, 2022



A. J. Torii, R. Begnini, H. M. Kroetz

hand, if STW
is high, W is responsible for a relevant part of the variance of the response, and the choice between

f1, f2, ..., fm becomes significant.
In this way, STW

can be viewed as a measure of discrepancy between models in the stochastic context.
It means that the comparison depends on the degree of randomness of the variables and their influence on the
response. Consequently, discrepant models in the deterministic context may end up being similar in the stochastic
context if individual variables account for most part of V [Y ].

Note that, as described, the proposed approach for model comparison is cast in the context of variance-
based GSA, which provides the method with the sound mathematical basis of Sobol’ indices [6] and the efficient
computational techniques available [12].

4 Numerical examples

Two examples are presented in this section to illustrate the applicability of the proposed approach. The first
example compares a quadratic function and its first order Taylor expansion. In the second example, we compare
two models employed to determine the ultimate bending moment of reinforced concrete beams. Sobol’ indices
presented here have been evaluated through the MATLAB toolbox GSAT developed by Cannavó [13].

4.1 Mathematical models

Two mathematical models are described in eq. (6) and eq. (7). As illustrated in Fig. 1, the model f2 is the first
order Taylor expansion of f1 at (x1, x2) = (6, 6). Variables are taken as independent and normally distributed,
and indices were determined with a sample size equal to 105.

f1(X1, X2) = X2
1 +X2

2 +X1X2 (6)

f2(X1, X2) = 108 + 18(X1 − 6) + 18(X2 − 6) (7)

Three comparison cases are considered according to the statistical parameters shown in Table 1. At first we
take expected values E [X1] = E [X2] = 6 and standard deviations

√
V [X1] =

√
V [X2] = 1, i.e. random

variables are centered at the point at which both models are equivalent. The Sobol’ total indices obtained in this
case are presented in the second line of Table 1. The index STW

resulted in close to 0.3%, which indicates that
both models are very similar when randomness is taken into account.

Table 1. Total sensitivity indices in each case.

Statistical parameters STW
ST1 ST2

X1 ∼ N (6, 1), X2 ∼ N (6, 1) 0,0027 0,4976 0,5032

X1 ∼ N (9, 1), X2 ∼ N (10, 1) 0,2854 0,3653 0,3872

X1 ∼ N (9, 22), X2 ∼ N (10, 32) 0,1311 0,2729 0,6477

In the second case, we take E [X1] = 9, E [X2] = 10 and keep the standard deviations unchanged. Here the
index STW

resulted close to 29%, meaning that now f1 and f2 are considerably discrepant, and model choice is
relevant to the response. It happens because now the expected values are different from (x1, x2) = (6, 6), the point
at which f2 approximates f1.

Finally, in the third case, expected values are kept unchanged from the second case, but standard deviations
are higher (

√
V [X1] = 2 and

√
V [X2] = 3). The sensitivity index with respect to W resulted in lower than

previously (STW
≈ 13%), which suggests that the discrepancy between f1 and f2 is lower (i.e. the models are

more similar). This is explained because X1 and X2 have higher variability and thus are responsible for a more
considerable portion of V [Y ]. Note, too, that differently from the previous cases in which X1 and X2 had similar
or slight different indices, here ST1

≈ 27% and ST2
≈ 65%, indicating that X2 has a much higher impact than X1.
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Figure 1. Models f1 and f2.

4.2 Ultimate bending moment

The ultimate bending moment (Mu) is an important question in the structural design of reinforced concrete
beams. It tells us the maximum bending moment a beam can resist before failure and depends on parameters such
as the geometry of the beam, resistance of materials and stress distribution.

One simple model to determine the ultimate bending moment for a given reinforced concrete cross section
under flexure is given by

Mu = zAsfy (8)

where z is the lever arm between compression and tension forces, As is the steel area, and fy is the steel yielding
stress. For preliminary estimation purposes, Mu can be approximated by taking z = 0.9d, where d is the cross
section’s effective depth.

In the second model, we determine the moment-curvature relation and maximum bending moment through
the integration of the stress field over the cross section. Although more computationally demanding, this method
can handle any cross section shape and constitute law of materials. MATLAB routines proposed by Melo et al.
[14] have been employed to generate moment-curvature relations. Bilinear constitutive law is considered for steel,
with tensile stress given by

σs =


εsEs, 0 ≤ |εs| ≤ εsy

fyεs/|εs|, εsy ≤ |εs| ≤ εsu

0, |εs| > εsu

(9)

where εs is the strain in the steel, fy is the yielding stress, Es = 210GPa is the modulus of elasticity of the steel,
εsy = fy/Es and εsu = 10‰

In the case of concrete, Hognestad constitutive law [15] has been employed. No tension resistance has been
considered. Compressive stress is given by

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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σc =

 0.9fc

[
2εc
ε0

−
(

εc
ε0

)2
]
, εc ≤ ε0

0.9fc − 0.135fc
εc−ε0
εcu−ε0

, ε0 < εc ≤ εcu

(10)

where εc is the strain in the concrete, fc is the compressive strength, ε0 = 1.62fc/Ec and εcu = 3.8‰. The
modulus of elasticity is taken as Ec = 4700

√
fc for normal weight concrete [16].

Here we take a rectangular reinforced concrete cross section with width b, effective depth d and steel area
As. Mean (µ) and coefficient of variation (COV) values according to Nowak et al. [17] are presented in Table 2 for
basic random variables. Beam height (h) is taken as d/0.9 and steel area is equivalent to 0.15%, 0.5%, 1%, 1.5%
and 2% reinforcement ratio (ρ). Steel nominal yield strength equals 500MPa, and concrete nominal compressive
strength varies from 20MPa to 50MPa.

Table 2. Statistical parameters for variables.

Category Variable Unit Distribution Nominal µ COV

Geometry Width b mm Normal 200 202 0.04

Effective depth d mm Normal 400 396 0.04

Steel Area As mm2 Normal ρbh ρbh 0.015

Yield strength fy MPa Normal 500 565 0.03

Concrete Compressive strength fc MPa Normal 20 26.40 0.17

Normal 25 31.75 0.16

Normal 30 36.60 0.14

Normal 35 41.30 0.13

Normal 40 46.40 0.12

Normal 45 51.30 0.12

Normal 50 56.00 0.12

Total sensitivity indices were evaluated with a sample size N = 2000. Table 3 presents the results using
concrete nominal strengths and reinforcement ratios tested. The results show that, in general, the models tend
to agree more (i.e. sensitivity indices are lower) for lower reinforcement ratios combined with lower concrete
strengths and higher reinforcement ratios combined with higher concrete strengths.

The dark blue region in Fig. 2 reveals fc and ρ values for which models present high similarity. Note that
standard deviations for concrete strength are higher for higher values of fc (although COV values are lower), which
is partly responsible for the lower sensitivity indices observed at the top of Fig. 2.

Models are significantly discrepant when extreme reinforcement ratios (0.15% and 2.0%) are considered,
independent of fc. In these cases, lever arm z = 0.9d does not provide a good approximation for the ultimate
bending moment. Using the same approach, we can adjust the coefficient to obtain a better fit, which can be
further investigated in future works.

5 Conclusions

This work presented an approach to comparing mathematical models in the stochastic context. The method al-
lows to measure the discrepancy between models considering the uncertainty in the input. Consequently, variables’
randomness affects directly how discrepant two or more models are, which does not happen in a deterministic anal-
ysis. Besides, variance-based GSA provides the approach with a solid theoretical basis and efficient computational
techniques.

The numerical examples presented practical applications by measuring the discrepancy between the models
described. The second example demonstrated the cases in which a simple model is similar to a more complex one
and thus can be adopted without loss of precision.
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Table 3. Total sensitivity indices according to reinforcement ratio and concrete strength

Concrete nominal Reinforcement ratio

strength (MPa) 0.15% 0.5% 1.0% 1.5% 2.0%

20 0.3253 0.0855 0.2441 0.6185 0.8241

25 0.3433 0.1232 0.0955 0.4700 0.7093

30 0.3601 0.1618 0.0384 0.3062 0.6056

35 0.3549 0.1809 0.0228 0.1883 0.4805

40 0.3610 0.2015 0.0255 0.0889 0.3419

45 0.3657 0.2142 0.0552 0.0404 0.2488

50 0.3693 0.2236 0.0621 0.0269 0.1709

Figure 2. Total sensivitity index isolines representing the fitted surface with R2 = 0.928.
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