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Abstract. Rubberlike materials, such as soft biological tissues, may exhibit high nonlinear inelastic responses 

when subject to large strains. Also, anisotropic inelastic behaviors induced by deformation are observed in the 

literature. The anisotropic behavior associated with coupled inelastic effects has been a major challenge in the 

constitutive modeling of materials. Then, this paper presents a variational full-network model capable of 

representing coupled anisotropic damage and viscoelasticity responses induced by deformation. The proposed 

model combines the advantages of the full-network and variational frameworks, resulting naturally in a set of 

scalar minimization problems. The inelastic scalar variables at each material point are related to the quadrature 

points directions used in the full-network integration scheme, and their evolution is assessed graphically in a very 

intuitive way. A numerical inflation test of a plate is presented to explore the ability of the proposed model to 

represent anisotropic damage and viscoelasticity and maintain accuracy for large deformations and increments. 
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1  Introduction 

Materials such as soft biological tissues are considered rubberlike materials. When they are subjected to 

deformations, nonlinear behaviors may arise. Highly nonlinear responses occur gradually and concomitantly with 

other complex behaviors. For example, viscous behaviors are easily recognizable by observing creep, relaxation, 

and hysteresis behaviors. Likewise, in the case of biological tissues, the anisotropic damage behavior presented by 

these materials can be observed in tissues such as skin, tendons, and arteries when subjected to large deformations 

since they gradually lose their ability to stretch (Holzapfel [1]). Several works seek to study such mechanical 

behavior in different loading regimes, compilations of these studies can be found in Humphrey [2], Pena et al. [3], 

Hamedzadeh et al. [4], which is currently a widely investigated subject. 

In order to model and infer the mechanical responses of these materials, different approaches to constitutive 

modeling of biological tissues have been studied in recent years. A list of these models and their common features 

are found in Li's work [5]. Generically, such models use hypotheses about the recognized anisotropic 

characteristics presented by biological tissues. Thus, several models have been developed to represent damage 

associated with one or more fiber families by Balzani et al. [6], Pena [7], Vassoler et al. [8], or also in fully 

anisotropic models by Menzel and Waffenschmidt [9] and Saez et al. [10]. A variational framework has been 

explored to introduce nonlinear inelasticity in isotropic and anisotropic material models, where its main advantage 

is the flexibility to choose or construct different energy functions to predict the inelastic response. Is has been use 

for isotropic viscoplasticity [11], anisotropic viscoelasticity [12], and damage and viscoelasticity for fibers [8]. 

Another relevant and interesting framework to model material, which is capable of dealing naturally with 

anisotropic elasticity, is the full-network modeling (Menzel and Waffenschmidt [9], Saez et al. [10]). This model 

consists of the concept of a network of randomly oriented chains at junction points (Wu and Van Der Giessen 
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[13]). This approach makes it possible to present a completely anisotropic behavior. In recent work, Bresolin and 

Vassoler [14] unified the variational and full-network frameworks into a variational full network model. Thus, this 

work aims to study the variational full-network approach by applying it to numerical tests of biological tissues in 

order to evaluate its capability to represent anisotropic viscosity and damage effects. 

2  Variational full-network framework 

The variational model is based on the stress calculation through a pseudo-hyperelastic formulation, where 

the incremental potential Ψ can be determined in order to satisfy eq. (1) (Vassoler et al. [8], Ortiz and Stainier 

[15]. 

 𝑺𝑛+1 = 2
𝜕Ψ(𝑪𝑛+1;𝜉𝑛)

𝜕𝑪𝑛+1
 (1) 

where 𝑺 is the second Piola-Kirchhoff stress tensor, 𝑪 is the right Cauchy-Green strain tensor defined by 𝑪 = 𝑭𝑇𝑭, 

where 𝑭 is strain gradient. The set 𝜉 corresponds to the state variables of the given problem in terms of 𝜉 =

𝜉(𝑪, 𝜆𝑣 , 𝜂), where 𝜆𝑣  is a measure of viscous strain, and 𝜂 is a measure of damage. The subscripts present in the 

expression eq. (1), 𝑛 and 𝑛 + 1 correspond to the previous and current instants, respectively. In the variational 

structure, the incremental potential Ψ, takes the form of the expression shown in eq. (2). 

 Ψ(𝑪𝑛+1; 𝜉𝑛) = min
𝜆𝑛+1

𝑣 ,𝜂𝑛+1

{𝑊(𝜉𝑛+1) − 𝑊(𝜉𝑛) + Δ𝑡𝜓(𝑑𝑣 , �̇�; 𝜉𝑛+1)} (2) 

where the measure 𝑑𝑣 = �̇�𝑣(𝜆𝑣)−1. For the deformation measures used, the variable 𝜆𝑣  is obtained from the 

viscoelastic decomposition of the elongation measure 𝜆 = √𝒎 ∙ 𝒎 = √�̅�𝒎0 ∙ �̅�𝒎0 = √𝒎0 ∙ �̅�𝒎0, where is 

defined �̅� = det(𝑭)−1/3 𝑭 = 𝐽−1/3𝑭 with the viscoelastic decomposition shown in eq. (3). 

 𝜆(�̅�, 𝒎0) = 𝜆𝑒𝜆𝑣 𝒎0 ∙ 𝒎0 = 1 (3) 

It is possible to take into account all possible directions that contribute to an elastic energy density 𝜑𝑒, through 

the full-network approach (Wu and Van Der Giessen [13]). This determination at a given point in the material is 

defined by eq. (4). 

 𝜑𝑒 = ∫ 𝐶𝜔𝑒𝑑Ω
Ω

 (4) 

where 𝐶 corresponds to the density of the chains as a function of the set of directions Ω and time. Thus 𝐶 =

𝐶(Ω(𝑡)), and Ω corresponds to the set of directions of integration of a point of the material in the current 

configuration. Rewriting this expression for the reference configuration, and assuming that the orientations of the 

fibers are random in this reference configuration, the chain density assumes the constant value shown in eq. (5) 

(Wu and Van der Giessen [16]). Therefore, if evaluated the potential of the previous expression eq.(4), at the 

current instant eq. (5), is obtained the expression of eq. (6). 

 𝐶(Ω(𝑡 = 0)) = 𝐶(Ω0) =
1

4𝜋
 (5) 

 𝜑𝑒 =
1

4𝜋
∫ 𝜔𝑒𝑑Ω0Ω0

 (6) 

The integration in eq. (6) for the elastic energy density (𝜑𝑒) can be approximated numerically by the algebraic 

summation of spatial directions resulting in eq. (7). Extending this approach to the viscous (𝜓𝑣) and damage (𝜓𝜂) 

potentials, and using the same set of orientation vectors and associated weights for each potential, we obtain the 

expressions eq. (8) and eq. (9), respectively. 

 𝜑𝑒 ≈ 2 ∑ ℎ𝑘𝜔𝑒𝑚
𝑘=1  (7) 

 𝜓𝑣 ≈ 2 ∑ ℎ𝑘𝜔𝑣𝑚
𝑘=1  (8) 

 𝜓𝜂 ≈ 2 ∑ ℎ𝑘𝜔𝜂𝑚
𝑘=1  (9) 

Equations (7), (8), and (9) correspond to the numerical integration of the presented potentials using the 

Lebedev quadrature (Govindjee et al. [17]). The potentials 𝜔𝑒, 𝜓𝑣  and 𝜓𝜂 provide flexibility to the model since 

they can take different forms of expression. Examples of choices for these potentials and how they are treated in 

variational models can be found in Vassoler et al. [8]. 
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2.1 Incremental solution 

For the incremental solution, the rate quantities are considered constant throughout each increment, that is, 

𝑑𝑣 ≈ ∆𝑞/∆𝑡 and �̇� ≈ ∆𝜂/∆𝑡. Thus, the evaluation of the internal variables at 𝑡𝑛+1 are determined by eq. (10), eq. 

(11) and eq. (12). 

 𝜆𝑛+1
𝑣 = 𝜆𝑛

𝑣 exp(∆𝑞) (10) 

 𝜆𝑛+1
𝑒 = 𝜆𝑛+1𝜆𝑛

𝑣−1 exp(−∆𝑞) = 𝜆𝑡𝑟𝑖𝑎𝑙 exp(−∆𝑞) (11) 

 𝜂𝑛+1 = 𝜂𝑛 + ∆𝜂 (12) 

The potentials 𝑊 and 𝜓 can be rewritten using the elastic, viscous and damage potentials described, as 

expressed in eq. (13) and eq. (14). 

 𝑊(𝜉) = 𝑈(𝐽) + 𝜑𝑒(𝜆𝑒 , 𝜂) (13) 

 𝜓(�̇�𝑣 , �̇�; 𝜉) = 𝜓𝑣(𝑑𝑣) + 𝜓𝜂(�̇�, 𝜂) (14) 

where the 𝑈 potential corresponds to the volumetric potential, 𝜑𝑒 to the elastic potential, 𝜓𝑣  to the viscous 

dissipative potential, and 𝜓𝜂  to the damage dissipative potential. 

The minimization presented in eq. (2), can be rewritten using the numerical integration of the potentials 𝜑𝑒, 

𝜓𝑣  and 𝜓𝜂, as shown in eq. (7) to (9). With the "full-network" approach, each fiber orientation has an independent 

set of variables {𝜆𝑛+1,𝑘, ∆𝑞𝑘, ∆𝜂𝑘} that are independent of the set of variables of the other integration orientations. 

In this case, the system of equations simplifies to one-dimensional problems where the original minimization 

problem is divided into "𝑚" decoupled minimization problems, eq. (15). 

 2 ∑ ℎ𝑘 min
∆𝑞𝑘,∆𝜂𝑘

{(1 − 𝜂𝑛+1,𝑘)�̅�𝑒(𝜆𝑛+1,𝑘
𝑒 ) + Δ𝑡 (𝜔𝑣(∆𝑞𝑘/Δ𝑡) + 𝜔𝜂(∆𝜂𝑘/Δ𝑡; 𝜂𝑛+1,𝑘))}𝑚

𝑘=1  (15) 

To solve these minimization problems, Newton's method is used. Finally, with the internal variables for each 

orientation, the stress response to this problem can be determined by eq. (16), 

 𝑺𝑛+1 = 2
𝜕Ψ

𝜕𝑪𝑛+1
= 2 ∑

𝜕Ψ

𝜕𝜆𝑛+1,𝑘

𝜕𝜆𝑛+1,𝑘

𝜕𝜆𝑛+1,𝑘
2

𝜕�̅�𝑛+1

𝜕𝑪𝑛+1
:

𝜕𝜆𝑛+1,𝑘
2

𝜕�̅�𝑛+1

𝑚
𝑘=1 + 2

𝜕Ψ

𝜕𝐽𝑛+1

𝜕𝐽𝑛+1

𝜕𝑪𝑛+1
 (16) 

that can be rewritten as eq. (17). 

 𝑺𝑛+1 = 𝐽𝑛+1

−
2

3 Dev (∑
2ℎ𝑘

𝜆𝑛+1,𝑘

𝜆𝑛+1,𝑘
𝑒

𝜆𝑛+1,𝑘

𝑚
𝑘=1

𝜕�̅�𝑒

𝜕𝜆𝑛+1,𝑘
𝑒 𝒎0,𝑘 ⊗ 𝒎0,𝑘) + 𝐽𝑛+1

𝜕𝑈

𝜕𝐽𝑛+1
𝑪𝑛+1

−1  (17) 

3  Model application results 

To demonstrate the capability of the proposed model, a numerical case of a thin circular plate under cyclic 

pressure in the 𝑧 direction was simulated with a pressure rate of �̇� = 100 𝑃𝑎/𝑠. The numerical case is simulated 

through the finite element method (FEM), using Ansys Mechanical APDL. The eight-node element (SOLID185) 

was used, which is a general-purpose linear brick element used for the 3D modeling of solid structures. In the eq. 

(18), eq. (19), eq. (20) and eq. (21) are presented the potentials used in the numerical simulation. 

 𝜔 =
𝜇∗

𝛽∗ ((𝜆)𝛽∗
− 1) − 𝜇∗(𝜆 − 1) (18) 

 𝜔𝑒 =
𝜇

𝛽
((𝜆𝑒)𝛽 − 1) − 𝜇(𝜆𝑒 − 1) (19) 

 𝜓𝑣 = 𝛾(𝑑𝑣)2 (20) 

 𝜓𝜂 = 𝑌0 − 𝛿 log (1 −
𝜂

𝜂∞
) (21) 

where 𝜇∗, 𝛽∗, 𝜇, 𝛽, 𝛾, 𝑌0, 𝛿 and 𝜂∞ are material parameters presented in Tab. 1. Te rheological representation of 

this set of potentials is shown in Fig. 1 (Bresolin and Vassoler [14]). 

Table 1. Constitutive parameters used in the model 
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𝜔 𝜔𝑒 𝜓𝑣  𝜓𝜂 

𝜇∗ = 2 ∙ 109 𝜇 = 3 ∙ 1011 𝛾 = 1.8 ∙ 109 𝑌0 = 0.05 

𝛽∗ = 2 𝛽 = 2 - 𝛿 = 7 ∙ 108 

- - - 𝜂∞ = 1 

 

Figure 1. Schematic of the rheological model (Bresolin and Vassoler [14]) 

The simulated plate has a thickness of 3 mm. For simplicity and to reduce computational efforts, a quarter of 

the plate was modeled using symmetry boundary conditions. The applied pressure simulating inflation is done 

with three cycles, with an increasing maximum pressure cycle by cycle, where the maximum peak is 2 kPa, as 

shown in Fig. 2. The maximum deformed configuration and displacement field can be seen in Fig. 3, where point 

A (maximum displacement point) is also indicated. 

 

Figure 2. Pressure applied to the plate versus time steps 
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Figure 3. Deformed plate configuration and displacement field 

This example has a heterogeneous field response for the quantities. This numerical example investigates point 

A (see Fig. 3), where the resulting stress-strain curve is presented in Fig. 4, and the history of stress and strain in 

Fig. 5. 

 

Figure 4. Stress-strain graph at point A 

 

Figure 5. Stress and strain graph for each time step at point A 

As observed in the results, the elastic response presents the already expected behavior of non-linearity with 

viscous effects, evidenced in the evolution of the stress-strain curve during the cyclic loading. 

4  Conclusions 

In this work, a variational full-network model was studied. The framework incorporates characteristics of 

variational models to represent characteristic behaviors of soft biological tissues: viscoelasticity, nonlinear 

behavior, and anisotropic damage. In the constitutive model studied, these behaviors were related to internal 

variables used for the constitutive model. 

The study of the model's ability to simulate biological tissues is still under development. However, the 

numerical results demonstrate the model's ability to reproduce the inelastic characteristics desired for a pressure 

load applied to a plate. These results can be used in the future to characterize skin using experimental data obtained 

from suction experiments such as those performed by [18-20]. Furthermore, as noted in the mathematical 
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definitions, the model is capable, by simply modifying the potentials, of having its behavior altered, showing 

flexibility to be able to represent different biological tissues (and other materials with viscoelastic and anisotropic 

characteristics). For future work, complex geometries and loadings can be explored, in addition to different 

integration procedures of the variational full-network model. 
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