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Abstract. Nonlinear aspects of energy harvesting have been extensively investigated in the last 10 years for two
main reasons: improve the accuracy of the mathematical models of systems that inherently present nonlinear be-
haviour, and to intentionally introduce nonlinear behaviour to the system in order to improve the harvesting perfor-
mance. In this paper, we show the contributions of cubic nonlinear stiffness and quadratic nonlinear piezoelectrical
coupling on the dynamic behaviour of an aeroelastic energy harvesting system. To analyse each case analytically
the method of multiple scales is used. The application of nonlinearity can make systems difficult to solve. Multiple
scales is an analytical method to provide an approximate expression of the response of a system. This method work
for small periodic finite movements in the vicinity of a equilibrium. One of the advantages of this method is that
it allows solving equations in the presence of damping and nonlinearity. Numerically, the response is calculated
using a 4th order Runge-Kutta method. The amplitude related to plunge, pitch and voltage degrees of freedom as
function of the wind speed is analysed for different values of cubic and quadratic nonlinearity. The results indicate
that amplitude decreases when cubic nonlinear stiffness and quadratic nonlinear piezoelectrical coupling increase.
It is important to observe that the results show good agreement in the LCO amplitudes only near the bifurcation.
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1 Introduction

Energy harvesting is a technology that has been explored by researchers as an alternative to nonrenewable
energy resources in recent years [1], because it is a promising technology to produce sustainable energy sources,
replacing fossil fuel. There are many ways to harvest energy: electromagnetic, piezoelectric, thermoelectric, pyro-
electric, photovoltaic and solar heat collector [2]. Energy harvesters are designed to extract energy from ambient
mechanical vibration and transfer it to electrical devices [3]. Energy harvesting sources include mechanical vibra-
tional, RF, thermal gradient. There are also many types of energy transducers and techniques for energy storage
and distribution. It is important to extract the maximum output power to make this technology more viable. One
way to maximize energy harvesting power output is to choose the right type of piezoelectric and the right com-
bination of parameters [4]. But harvester performance is still an issue. The study of [5] discusses the work of
a piezoelectric harvester, in which efficiency is mainly related to the electromechanical coupling effect, damping
effect, excitation frequency and electric charge.

One of the many fields of study in which energy harvesting can be applied is in aeronautics. It has many
applications, such as generating low power electricity in various applications, ranging from aircraft and helicopters
to civil structures in high wind areas [6]. Aeroelasticity is a science that studies the behaviour and mechanical
properties of an elastic section or structure in interaction with air [7]. Flutter is a very important topic in aeroe-
lasticity, the flutter phenomenon occurs when an aircraft component presents a divergent oscillatory self-sustained
behaviour at a certain speed. It is an undesirable phenomenon in aircraft, as it can cause structural damage due to
aeroelastic instability [8]. But this oscillatory movement is an interesting source of research and study for energy
extraction. Besides that, one benefit of using energy harvesting in an aeroelastic system is that it increases the
flutter speed, which can be an interesting topic for aeronautics. Another benefit of energy harvesting is extracting
electrical energy from vibrating vibrations and directing it to the aircraft’s electronic devices.

An important question is how to improve this technology so that it can collect as much energy as possible.
Nonlinear elements were studied as a way to maximize power output in the typical aeroelastic section and suppress
flutter velocity. Nonlinear stiffness components were investigated on extracted energy and nonlinear aeroelastic
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behaviour [9]. The work of Triplett and Quinn [10] compares the use of nonlinear stiffness and nonlinear elec-
tromechanical coupling with the typical section with linear stiffness and linear electromechanical coupling, quanti-
fying vibration speed, mechanical and electrical power. It is possible to see that the addition of nonlinear elements
changes the system performance, so that the nonlinear electromechanical coupling can increase the system’s out-
put power, which allows extracting more energy. Sousa et al. [11] employs an inductor synchronized tap-changer
damping (SSDI) technique, capable of dealing with the nonlinear characteristics of the electrical domain of the
problem and the use of shape memory alloys (SMA) as an alternative to conventional actuators. The nonlinearity
applied to the system, by the SMA and SSDI together, results in a better aeroelastic behaviour, for a speed range
25 % greater than in a linear system.

The application of nonlinearity can make systems difficult to solve. Multiple scales is an analytical method
to provide an approximate expression of the response of a system. These methods work for small periodic finite
movements in the vicinity of a center [12]. One of the advantages of this method is that it allows solving equations
in the presence of damping and nonlinearity. The response of nonlinear dynamics of harvesters are studied using
the multiple scale method [13, 14]. The study of [15] applies the method of multiple scales to an aeroelastic system
to derive the normal form of the Hopf bifurcation near the flutter onset. The nonlinear control reduces the LCO
amplitude.

2 Mathematical model

In this section, the model and the dynamical equations of the aeroelastic typical section are described. Also,
the mathematical model for aerodynamic loads is presented. Figure 1 shows the model of the aeroelastic typical
section of a system with three degrees of freedom: two mechanical degrees of freedom, plunge (h) and pitch (α),
and one electrical degree of freedom, voltage (v). The piezoelectric coupling is associated to plunge.

Figure 1. Aeroelastic section.

The dynamical equations, based on [16], of the system presented in fig. 1, applying the nonlinear stiffness of
the cubic type associated to plunge movement and nonlinear electromechanical coupling, in dimensionless form,
are given by:

βh′′ + xαα
′′ + ζhh

′ + h+ δh3 − κ(K|h′|+ 1)v = −Lh
xαh

′′ + r2αα
′′ + ζαα

′ + γ2r2αα = Mα

ηv′ +
v

λ
+ κ(K|h′|+ 1)h′ = 0 (1)

in which h and α are the dimensionless plunge and pitch displacements, β is the dimensionless mass ratio, ζh
and ζα are the dimensionless plunge and pitch damping ratios, xα is the dimensionless chord-wise offset of the
elastic axis from the centroid, rα is the dimensionless radius of gyration, γ is the dimensionless frequency ratio,
Mα is the dimensionless aerodynamic moment, Lh is the dimensionless aerodynamic lift, κ is the dimensionless
electromechanical coupling, λ is the dimensionless load resistance, v is the dimensionless electrical voltage, η is the
dimensionless equivalent capacitance, δ is the dimensionless nonlinear stiffness coefficient,K is the dimensionless
nonlinear electromechanical coupling coefficient, and ′ denotes differentiation over dimensionless time (τ ).

The dimensionless terms follows the definitions used by Marqui Jr and Erturk [16], and are reproduced as
follows:
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in which m is the typical section mass, me is the attachment mass, bxα is the offset from the elastic axis to the
centroid, h is the plunge displacement, dα and dh are the plunge and pitch damping coefficients, rα radius of
gyration, c is the span length, ωh and ωα are the uncoupled plunge and pitch natural frequencies, v is the electrical
voltage, v∗ = 1V is the reference voltage for normalisation, Rt is the load resistance, Cp is the piezoelectrical
equivalent capacitance, θ is the piezoelectrical coupling, L is the aerodynamic lift, M is the aerodynamic moment,
U is the wind speed, and t is the time.

The model for aerodynamical loads, lift (Lh) and moment (Mα), is used as presented by Dowell et al. [17]
for quasi-steady incompressible flow, and reproduced here:

L = ρ
U2

2
S
∂CL
∂α

[
α+

ḣ

U

]
M = ρ

U2

2
Se
∂CL
∂α

[
α+

ḣ

U

]
(3)

in which ρ is the air density, xf is the distance from the leading edge to the neutral line, and e =
xf

c−1/4 . Note that
eq. (3) is not in dimensionless form. To include this in eq. (1) one must use the dimensionless forms Lh and Mα,
given by eq. (2).

2.1 Multiple scales analysis

Following the method of multiple scales as described in [12, 15], eq. (1) is put in the form:

Ẏ = F (Y, U) (4)

To present Hopf bifurcation when U = Uf , a small dimensionless parameter ε is introduced. Wind speed is
expanded as follows: U = Uf + ε2σUUf . A third-order solution is sought in the form:

Y (t, σU ) = εY1(T0, T2), ε2Y2(T0, T2), ε3Y3(T0, T2) (5)

The derivative time is written as follows:

d

dt
= D0 + ε2D2 + ε3D2 (6)

Replacing eq.(5) and eq.(6) in eq.(4), and separating equations according to the powers of ε results in:

D0Y1 −A(Uf )Y1 = 0 (7)

D0Y2 −A(Uf )Y2 = Q(Y1, Y1) (8)

D0Y3 −A(Uf )Y3 = −D2Y1 + σUBY1 + 2Q(Y1, Y2) + C(Y1, Y1, Y1) (9)

in which Q is the quadratic nonlinear vector C is the cubic nonlinear vector, and B is the matrix that contains the
coefficients of sigmaU :
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Foz do Iguaçu, Brazil, November 21-25, 2022



Template file for CILAMCE-2022 full-length paper (enter here with the short title of your paper)

B =



0 0 0 0 0

0 0 0 0 0

0
4πU2

fρσx
2
α+4πU2

f r
2
αρσ

mω2
hx

2
α−betamω2

hr
2
α

2πUfρσx
2
α+2πUfr

2
αρσ

mω2
hx

2
α−βmω2

hr
2
α

0 0

0 − 4πU2
fρσβ+4πU2

fxαρσ

mω2
hx

2
α−betamω2

hr
2
α
− 2πUfρσβ+2πUfxαρσ

mω2
hx

2
α−βmω2

hr
2
α

0 0

0 0 0 0 0


(10)

The eigenvectors of 10 are also required in the method. The right eigenvector is represented by p, and the left
eigenvector is represented by q which is normalized as:

q =
q

|qT p|
(11)

System response for the multiple scale method is given by:

a =

√
−4β

Λa
(12)

in which the parameters Λa and β are given by:

Λa = 4qTQ(p, ζ0) + 2qTQ(p, ζ2) + 3qTC(p, p, p) (13)

β = qTσUBp (14)

The values of ζ0 e ζ2 can be calculated through the equations:

ζ0 =
−Q(p, p)

A(Uf )
(15)

ζ2 =
Q(p, p)

2iωI −A(Uf )

2.2 Numerical analysis

The response of the system is calculated through numerical simulation, using a 4th order Runge-Kutta method.
The flutter speed was determined with an optimisation procedure based on the interval halving method (or bissec-
tion method). In the this method, one-half of the current interval of uncertainty is discarded in every stage, until the
right solution is found, for the middle point of the final interval (Rao, 2009). From an initial guess for the interval,
which is taken based on the flutter speed of the linear system, and with the other parameters fixed, the optimisation
procedure seeks to minimise the difference between consecutive peaks of the response in time. If the difference is
zero, this gives the condition of self-sustained oscillation. Therefore, the objective function is given by:

f(U) = |Df | − E (16)

in whichDf is the difference between the penultimate amplitude peak and last amplitude peak, andE is a tolerance.
Equation (16) allows the reasoning that in order for flutter to happen, the distance between the peaks must be 0.
Since the equations are solved numerically, a tolerance must be considered.

The values of parameters used here are based on values from [16]: β = 2.5940, rα = 0.5467, γ = 0.5090,
ζh = 0.0535, ζα = 0.1102, xα = 0.25,ρ = 1.2754kg/m3 , b = 0.76 m, κ varies from 2 × 10−6 to 8 × 10−6 até
, η = 3.66 × 10−9, λ = 0.48 × 109, m = 92.53 kg, ωh = 50 rad/s. The initial conditions used are h = 0.01,
α = 0.01, h′ = 0 e α′ = 0 e v = 0.
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3 Results

Figure 2 shows amplitude as a function of wind speed, using 4th runge kutta method (RK) and multiple scales
method (MMS), varying δ and fixing K = 1. Plunge (h), pitch (α) and voltage(v) decreases when δ increase for
this range of wind speed, so cubic nonlinear stiffness reduces LCO amplitudes, for this range. Comparing both
methods, we have a good agreement, for plunge, pitch and voltage. The biggest difference between both methods
is 10.7%, it is given by voltage for δ = 1 and K = 1 and U = 68.
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Figure 2. a) Mechanical amplitude (plunge) b) Mechanical amplitude (pitch) c) Electric amplitude as a function
of wind speed, 4th runge kutta method (RK), d) Mechanical amplitude (plunge) e) Mechanical amplitude (pitch) f)
Electrical amplitude as a function of wind speed, using multiple scales method (MMS).

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Figure 3 shows amplitude as a function of wind speed, using 4th runge kutta method and multiple scaleS
method (MMS), varying K and fixing δ. Plunge (h), pitch (α) and voltage(v) decreases when K increase for
this range of wind speed, so quadratic nonlinear piezoelectrical coupling reduces LCO amplitudes, for this range.
Comparing both methods, we have a good agreement for plunge and pitch. For voltage it does not present a good
approximation, the biggest difference between both methods is 73.9%, for δ = 1 and K = 20 and U = 68. It is
noticed that we have difference in concavity for voltage from K = 10 between both methods, what explains the
difference of values.
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Figure 3. a) Mechanical amplitude (plunge) b) Mechanical amplitude (pitch) c) Electric amplitude as a function
of wind speed, 4th runge kutta method (RK), d) Mechanical amplitude (plunge) e) Mechanical amplitude (pitch) f)
Electrical amplitude as a function of wind speed, using multiple scales method (MMS).
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4 Conclusions

In this work we explore the method of multiple scales to analyse energy harvesting in aeroelastic system in
flutter condition, the approximated solution for the steady state motion of the system with cubic nonlinear stiffness
and quadratic nonlinear piezoelectrical coupling was calculated through multiple scales and 4th order Runge-Kutta
method. The results indicates that amplitude decreases when δ and K increase, so both nonlinearities can reduce
LCO amplitudes for wind speed near flutter. Comparing both methods, we have a good approximation, except for
voltage, when varying K. It is important to observe that the results show good agreement in the LCO amplitudes
only near the bifurcation.
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