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Abstract. In this work, we explore wave propagation in a one-dimensional diatomic periodic structure with high-
static-low-dynamic stiffness (HSLDS) characteristics, which is a geometric nonlinearity. A diatomic chain consists
of two different masses per unit cell, and diatomic periodic structures can present interesting dynamic characteris-
tics, in which waves can attenuate within frequency bands that are called bandgaps. A periodic structure consists
fundamentally of identical components, the cells, connected in a way that characteristics of mass, stiffness, and or
damping are spatially repeated, and present interesting characteristics for vibration attenuation that are not found
in classical structures. These characteristics have been explored for automotive and aerospace applications, among
others, as structures with low mass are paramount for these industries, and keeping low vibration levels in a wide
frequency range is also desirable.

We use closed-form first-order approximation via perturbation analysis to study wave propagations by disper-
sion relations of the infinite structure considering the effect of nonlinear terms. We verify the nonlinear bandgap
seen via the dispersion relation by comparing it to the transmissibility of a finite structure. We use the disper-
sion relation to analyse how some parameters can influence the bandgaps, such as the mass ratio between the cell
elements and amplitude.

Keywords: HSLDS, Metastructure, Dispersion relation, Bandgap.

1 Introduction

Research on metastructures is attracting increasing attention from many engineering applications, such as
civil, automotive and aerospace structures, as they have interesting characteristics such as band gaps and band
stops [1]. These characteristics can be manipulated by the macro geometrical arrangement of its fundamental
components, or unit cells, in a way that characteristics of mass, stiffness and or damping are spatially repeated
and the resulting band gaps are in a desired frequency range [2–4]. According to Chakraborty and Mallik [5] an
advantage of metastructure is that the dynamics of these structures can be studied with the analysis of just one
cell. According to Mead [6] limiting values of band gaps and band stops can be found by analysing the natural
frequencies of free and fixed cells, these frequency ranges can also be found by analysing the transmissibility of a
single cell [7].

In order to increase the bandwidth of vibration attenuation in metastructures, nonlinear characteristics have
been explored in different ways. Both nonlinear stiffness and damping can affect the dynamic behaviour of such
structures [5, 8–10]. High-static-low-dynamic stiffness (HSLDS) is an example of nonlinearity and can be used to
attenuate vibrations, as is done in [11–13]. The propagation of acoustic waves can also change due to nonlinear
effects [14]. Besides that, metastructures with nonlinear characteristics can have chaotic responses in addition to
the periodic ones more commonly observed [15]. To analyse wave propagation, it is possible to use the dispersion
relation, as is done in [13], [16] and [17].

In this work, we explore the influence of the mass ratio on the bandgap. We see that it is possible to locate
the bandgap of the metastructure by analysing both the transmissibility of just one cell and the dispersion relation
of the infinite structure. We also see that the nonlinear term influences the limiting values of bandgap, in addition
to influencing quasi-static frequency.
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2 Mathematical model

Figure 1 (a) shows a model of the metastructure with axial vibration F (t) that is analysed in this work.
Figure 1 (b) shows the geometric change effect in the vertical spring with stiffness coefficient ka under large
displacements. The unit cell with 3 degrees of freedom is shown enclosed within the dotted lines, and is used for
the analysis of the finite structure. For the finite structure, we use this cell because it is symmetric. Because, as
shown in [18], a periodic structure with symmetrical cells has the same limiting values of bandgap, independent of
the number of cells. However, when analyzing the infinite structure, the unit cell shown within the dashed lines is
used for convenience, as this has two degrees of freedom. It can be shown that the dispersion relation is the same
for the two types of cells.

The metastructure has mass, damping and stiffness coefficients named m1, m2, c and k, respectively. The
block with mass m2 is attached to a vertical linear spring with stiffness coefficient ka. For small displacements
of the block in the x direction, there is no influence of the vertical spring. For large displacements, a nonlinear
restoring force is present due to geometric arrangement.
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Figure 1. (a) Nonlinear metastructure and (b) geometric change effect in the vertical spring with stiffness coefficient
ka under large displacements.

The vertical spring with stiffness coefficient ka has an initial length L0. After being deformed, this spring
has a time-varying length of L =

√
L2
0 + u2j,2. Since the movement of the metastructure is in the x direction, we

must decompose the force in that direction, using:

sin(θ) =
uj,2
L

=
uj,2√

L2
0 + u2j,2

(1)

substituting eq. (1) in the x component of the force and considering L =
√
L2
0 + u2j,2, we have the nonlinear

restoring force of the spring with stiffness coefficient ka, and the approximation of nonlinear term considering
L0 > 0 and 0 ≤ uj,2 ≤ 0.5, given by:

kauj,2

1− L0√
L2
0 + u2j,2

 ≈ kau
3
j,2

2L2
0

(2)

The dynamical equations can be obtained by applying Newton’s second law, giving the general form:

Mẍ+ Cẋ+Kx+G(x) = F (t) (3)

in which M , C and K are the mass, damping and stiffness matrices, respectively. x is the displacement vector and
G(x) is a vector with nonlinear terms. F (t) is the external force applied to the structure (F (t) = F0 cos(Ωt)), in
which F0 is the amplitude and Ω is the frequency of excitation. Note that F (t) is a vector and only its last element
is nonzero, to represent an external force applied only at the rightmost mass.
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For the cell, the displacement vector is x = [x1, x2, x3]′, and the matrices are given by:

M =


m1 0 0

0 2µm1 0

0 0 m1

 C =


c −c 0

−c 2c −c

0 −c c

K =


k −k 0

−k 2k −k

0 −k k

 G(x) =


0

kau
3
j,2

2L2
0

0

 (4)

To solve the linear system it is used the method of mechanical impedance, in which the mechanical impedance
Z is found by the following equation: Z(iΩ) = −Ω2M + iΩC + K. Frequency response is found by solving X
from the following equation: X = [Z(iΩ)]−1F (t).

The transmissibility is the ratio between the displacement response of the leftmost and rightmost mass, that
is, T = X1/X2n+1. To find the frequencies referring to bandgap and bandstop, one must find the expressions to
|T | = 1, that is given by:

ω1 =

√
k

µm1
ω2 =

√
k1
m1

ω3 =

√
µk + k

µm1
(5)

2.1 Dispersion relation

We use closed-form first-order approximation via perturbation analysis, as in [16], to study wave propagations
by dispersion relations of the infinite structure shown in Fig. 1.

Considering a diatomic chain, as shown in the dashed line in Fig. 1, we can find the following equations of
motion:

2m1üj,1 + 2kuj,1 − kuj,2 − kuj−1,2 = 0

2µm1üj,2 + 2kuj,2 − kuj,1 − kuj+1,1 + ε
kau

3
j,2

2L2
0

= 0 (6)

Multiplying eq. (6) by 1
m1ω2

n
and considering nondimensional time τ = ωt, linear natural frequency ωn =√

k/m1, nondimensional frequency ω̄ = ω/ωn and k̄a = ka
m1ω2

n2L
2
0

, we have the following equation in matrix
form:

2ω̄2

 1 0

0 µ

 d2uj,1/dτ
2

d2uj,2/dτ
2

 +

 2 −1

−1 2

 uj,1

uj,2

 +

 −uj−1,2
−uj+1,1

 + ε

 0

k̄au
3
j,2

 =

 0

0

 (7)

Using the asymptotic expansions:

uj = u
(0)
j + εu

(1)
j + 0(ε2) ω = ω0 + εω1 + 0(ε2) (8)

Substituting eq. (8) into eq. (7) and equating the coefficients ε0 and ε1 to zero, we obtain:
Order ε0:

2ω̄2
0

 1 0

0 µ

 d2u
(0)
j,1/dτ

2

d2u
(0)
j,2/dτ

2

 +

 2 −1

−1 2

 u
(0)
j,1

u
(0)
j,2

 +

 −u(0)j−1,2
−u(0)j+1,1

 =

 0

0

 (9)

Order ε1:

2ω̄2
0

 1 0

0 µ

 d2u
(1)
j,1/dτ

2

d2u
(1)
j,2/dτ

2

 +

 2 −1

−1 2

 u
(1)
j,1

u
(1)
j,2

 +

 −u(1)j−1,2
−u(1)j+1,1

 =

−4ω̄0ω̄1

 d2u
(0)
j,1/dτ

2

d2u
(0)
j,2/dτ

2

−
 0

k̄a(u
(0)
j,2)3

 (10)
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Considering the following solutions:

 u
(0)
j,1

u
(0)
j,2

 =

 (A
(0)
1 /2)eiκa(2j−1)

(A
(0)
2 /2)eiκa(2j)

 eiτ + cc,

 u
(0)
j±1,1

u
(0)
j±1,2

 =

 (A
(0)
1 /2)eiκa(2(j±1)−1)

(A
(0)
2 /2)eiκa(2(j±1))

 eiτ + cc (11)

Substituting eq. (11) into eq. (9), we obtain two branches for the linear dispersion:

ω̄opt0 =

√√
µ2 + (4 cos(aκ)2 − 2)µ+ 1 + µ+ 1

2µ
(12)

ω̄aco0 =

√
−
√
µ2 + (4 cos(aκ)2 − 2)µ+ 1 + µ+ 1

2µ
(13)

Substituting eq. (12) eq. (13) and into eq. (9), we obtain the amplitude ratio for each mode at ε0 order:

ηopt =
A

(0)
2

A
(0)
1

=
2µ−

√
µ2 + (4 cos(aκ)2 − 2)µ+ 1− µ− 1

2µ cos(aκ)
(14)

ηaco =
A

(0)
1

A
(0)
2

=
2µ cos(aκ)

2µ+
√
µ2 + (4 cos(aκ)2 − 2)µ+ 1− µ− 1

(15)

Substituting eq. (11) into the second component of eq. (10), we obtain:

2µω̄2
0

d2u
(1)
j,2

dτ2
+ 2u

(1)
j,2 − u

(1)
j,1 − u

(1)
j+1,1 = d1e

2iκjaeiτ + d3e
6iκjae3iτ + cc (16)

The term to the left of the equality in eq. (16) is similar to eq. (9). Therefore, the terms that are secular and
must be eliminated are those that multiply eiτ in eq.(16) and are given by:

d1 = 2A
(0)
2 ω̄0ω̄1 −

3(A
(0)
2 )2Ā

(0)
2 k̄a

8
(17)

Equating d1 term shown in eq. (17) to zero, we obtain the first-order frequency correction:

ω̄1 =
3A

(0)
2 Ā

(0)
2 k̄a

16ω̄0
(18)

Substituting eq. (12) into eq. (18), and substituting this result and eq. (12) into second eq. (8), we obtain the
optical branch:

ω̄opt =
27/2

√
µ2 + (4 cos(aκ)2 − 2)µ+ 1 + (3

√
2 | A(0)

2 |2 εk̄a + 27/2)µ+ 27/2

16µ

√√
µ2+(4 cos(aκ)2−2)µ+1+µ+1

µ

(19)

Substituting eq. (13) into eq. (18), and substituting this result and eq. (13) into second eq. (8), we obtain the
acoustic branch:

ω̄aco = −
27/2

√
µ2 + (4 cos(aκ)2 − 2)µ+ 1 + (−3

√
2 | A(0)

2 |2 εk̄a − 27/2)µ− 27/2

16µ

√
−
√
µ2+(4 cos(aκ)2−2)µ+1−µ−1

µ

(20)
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3 Dynamical response of linear metastructure

Figure 2 shows the transmissibility of one cell and the linear relation dispersion of infinite structure, bandgaps
are represented by magenta and blue regions, in which the limiting values are that found by eq. (5). In both
transmissibility and dispersion relation we use three values of mass ratio: µ = 0.5 (dashed line), µ = 1 (continuous
line) and µ = 2 (dotted line). It is possible to note that for µ = 1 there is no bandgap.

(a) (b)

Figure 2. Transmissibility (a) and dispersion curve (b) of linear metastructure with three values of mass ratio
µ = 0.5 (dashed line), µ = 1 (continuous line) and µ = 2 (dotted line).

If µ < 1, we have the bandgap starting at ω2 and ending at ω1, if µ > 1 we have the opposite, the bandgap
starting at ω1 and ending at ω2 and the closer µ is to 1, smaller the bandgap range.

4 Dynamical response of nonlinear metastructure

In the nonlinear metastructure, we analysed the influence of nonlinearity on the bandgap. To do this analysis,
we use the stiffness coefficient ka = 5 × 10−3 and vary the amplitude A(0)

2 . In the analysis of the linear metas-
tructure, we saw that for µ = 1, there is no bandgap, so we analysed the nonlinear metastructure with µ = 0.5 and
µ = 2.

Figure 3 shows the nonlinear dispersion relation with µ = 0.5 and Figure 3 shows with µ = 2. (a) shows the
dispersion relation for κ from 0 to π, (b) a zoom of optical branch at κ close to 0, (c) a zoom of optical branch at
κ close to π, (d) a zoom of acoustic branch at κ close to 0, and (e) a zoom to κ close to π.

Figure 3 (d) shows the influence of nonlinearity on the quasi-static frequency, in which, the increase in
amplitude generates an increase in the bandgap region at this frequency range. Figures 3 (c) and (e) shows the
influence of nonlinearity in the bandgap region seen in the linear analysis. Here, we can see that increasing the
amplitude causes a shift to higher frequencies at the beginning and end of the bandgap.

Figure 4 shows an influence similar to the one seen in Fig. 3. That is, when analyzing the nonlinear metas-
tructure with µ = 2, we also have the influence of nonlinearity in the bandgap of the quasi-static region and the
bandgap region seen in the linear analysis. There is only one difference in the quasi-static region. We can see that
for this region, there is a larger bandgap for µ = 2.

5 Conclusions

In this work, we explore wave propagation in a one-dimensional diatomic periodic structure with high-static-
low-dynamic stiffness characteristics, which is a geometric nonlinearity. From the results shown in section 3, we
see that it is possible to find the bandgap by analysing the transmissibility of just one cell, in which these regions
could also be seen in the dispersion relation. For there to be a bandgap, the mass ratio must be different from 1, if
µ < 1, we have the bandgap starting at ω2 and ending at ω1, if µ > 1 we have the opposite, the bandgap starting
at ω1 and ending at ω2 and the closer µ is to 1, smaller the bandgap range. For the nonlinear metastructure, we can
observe the attenuation in the quasi-static region, and also an influence on the bandgap limiting frequencies, both
for µ = 0.5 and for µ = 2. The increase in amplitude A(0)

2 increases the influence in the quasi-static region and
the bandgap.
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(a) (b) (c)

(d) (e)

Figure 3. Nonlinear dispersion relation with µ = 0.5 to some values ofA(0)
2 (0, 5, 10, 15, 20 and 40). (a) dispersion

relation for κ from 0 to π, (b) zoom of optical branch at κ = 0, (c) zoom of optical branch at κ = π, (d) zoom of
acoustic branch at κ = 0 and (e) zoom of acoustic branch at κ = π.

(a) (b) (c)

(d) (e)

Figure 4. Nonlinear dispersion relation with µ = 2 to some values of A(0)
2 (0, 5, 10, 15, 20 and 40). (a) dispersion

relation for κ from 0 to π, (b) zoom of optical branch at κ = 0, (c) zoom of optical branch at κ = π, (d) zoom of
acoustic branch at κ = 0 and (e) zoom of acoustic branch at κ = π.
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Foz do Iguaçu, Brazil, November 21-25, 2022



D. P. Vasconcellos, M. Silveira

Acknowledgements. The first author thanks Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior –
Brazil (CAPES), for the financial support (Finance Code # 88887.487915/2020-00). The second author thanks
FAPESP (# 2018/15894-0).

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] M. I. Hussein, M. J. Leamy, and M. Ruzzene. Dynamics of phononic materials and structures: Historical
origins, recent progress, and future outlook. Applied Mechanics Reviews, vol. 66, n. 4, 2014.
[2] L. Cveticanin, M. Zukovic, and D. Cveticanin. Influence of nonlinear subunits on the resonance frequency
band gaps of acoustic metamaterial. Nonlinear Dynamics, vol. 93, n. 3, pp. 1–11, 2018.
[3] C. H. Lamarque, A. Ture Savadkoohi, and S. Charlemagne. Experimental results on the vibratory energy
exchanges between a linear system and a chain of nonlinear oscillators. Journal of Sound and Vibration, vol. 437,
pp. 97–109, 2018.
[4] D. M. Mead. Wave propagation in continuous periodic structures: research contributions from southampton,
1964–1995. Journal of sound and vibration, vol. 190, n. 3, pp. 495–524, 1996.
[5] G. Chakraborty and A. K. Mallik. Dynamics of a weakly non-linear periodic chain. International Journal of
Non-Linear Mechanics, vol. 36, n. 2, pp. 375–389, 2001.
[6] D. J. Mead. Wave propagation and natural modes in periodic systems: I. mono-coupled systems. Journal of
Sound and Vibration, vol. 40, n. 1, pp. 1–18, 1975.
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[18] J. Carneiro Jr, M. Brennan, P. Gonçalves, V. Cleante, D. Bueno, and R. Santos. On the attenuation of vibration
using a finite periodic array of rods comprised of either symmetric or asymmetric cells. Journal of Sound and
Vibration, vol. 511, pp. 116217, 2021.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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