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Abstract. In this paper we present a fully explicit finite element implementation for the simulation of the T2

relaxation and T1 recovery process in nuclear magnetic resonance experiments. We consider 2D domains defined
by images. We propose the combination of a lumped mass matrix and stable time-marching schemes to achieve
a fully explicit and stable simulation even with large time steps. The time-marching scheme we consider is the
Dufort-Frankel method which allows for large time-steps even for problems in the fast diffusion regime. We show
that the use of the lumped mass matrix adds a negligible amount of numerical error in comparison to the error
introduced by the discretization. We also show that this method compare favorably to the Explicit Euler in terms
of necessary number of time steps in order to achieve a reasonable threshold of numerical error.
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1 Introduction

Nuclear Magnetic Resonance (NMR) is a successful technique applied to petrophysical characterization of
porous reservoir rocks [3, 5]. The technique consists in the application of a static magnetic field to polarize the
sample’s nuclei that possess an angular spin moment and hence a net magnetic moment. This polarization creates
a net magnetization from the sum of each nuclei spin, which is then manipulated via the application of a secondary
magnetic field applied in the form of a finite pulse. Through the application of a single radio-frequency pulse
or a specific designed pulse sequence, the evolution of such polarized spin system reveals relevant aspects of the
physical-chemical properties of the sample.

Two of the most common application evolves the spins to probe the so-called T1 and T2 relaxation processes,
when the return to the equilibrium state of the magnetization depends on the pore-size information and the strength
of the fluid/matrix interaction [5]. The T2 relaxation process measures the loss of signal coherence caused by the
bulk, surface and magnetic field heterogeneities interactions. The T1 process measures the rate of return of the spin
coherence towards an equilibrium magnetic field, due to bulk and surface interactions.

The pore space of a given rock can be probed via these processes because the resulting signal is intimately
linked to the pore size distribution of the sample, specially in fast diffusion scenarios [3, 5]. These results can
be simulated digitally based on X-ray micro-computed tomography (micro-CT) images of rocks at an adequate
resolution, if they can well represent its pore space. These micro-CT images are a common resource in digital
petrophysics, and, in general, these digital representations can be formed by millions of individual pixels. The use
of this resource as a geometric representation for numerical simulations can prove challenging, both due to the size
of the problem and its numerical characteristics.

One possible way to simulate this phenomenon is to solve the continuum equation that represents the T2/T2

relaxation problem. This equation can be solved numerically via many different methods. The approach that
we will focus on here is the one using the Finite Element Method (FEM) to discretize the governing equations.
It allows for the simulation of complex domains, with the direct representation of the continuous magnetization
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function. It also has greater flexibility to couple the magnetization evolution with extra phenomena - such as
internal magnetic field gradients [10] and fluid flow [1],[2].

One major aspect of the FEM simulations of fast diffusion processes is the inherent numerical instability of
the process. Traditional explicit methods require a prohibitively small time-step size to be stable. It is possible to
tackle this problem with methods of increased stability like Runge-Kutta-Chebyshev (RKC) [9] or even to solve
the problem for its eigenfunctions-eigenvalues pairs representing the most important relaxation modes and times
[8].

The approach that we have here is to adopt the Dufort-Frankel method, which uses the indirect hyperboliza-
tion of the differential equation in order to achieve stability. This method, combined with the use of a lumped-mass
matrix system allows for a fully explicit time-integration process with minimal losses due to numerical error. We
show the magnitude of the influence of the choice of lumped mass and also in practical terms the reduction in
time-step number that can be achieved for a reasonable error threshold.

2 Mathematical and numerical modeling

2.1 Differential problem

Let Ω be the pore space, in the cases considered here a proper open subset of R2. The pore domain may
be formed by a set of disconnected regions or by a single region. Let Γ be the pore interface Γ ≡ Ω \ Ω. Let
m1,2(r,t) : [Ω,R≥0] → R≥0 be the nuclear magnetization intensity - m1 for the longitudinal recuperation problems
and m2 for the transversal relaxation problems. In the absence of a magnetic field gradient, the reaction-diffusion
equation can model the magnetization relaxation response as [11]:

∂m2

∂t
= D0∇2m2 −

1

Tb
m2 (1)

where D0 ∈ R>0 is the bulk diffusion coefficient [µm2/s], and Tb ∈ R>0 is the bulk relaxation time [s]. At the
pore interface Γ a partially absorbing boundary condition applies as D0∇n̂m2+ρ2 m2 = 0, where n̂ is the outward
normal vector to the boundary, and ρ ∈ R+ is the surface relaxivity [µm/s]. We will consider no relaxation due
to magnetic field gradients, and the initial condition will be an uniform magnetization, set at a reference value m0,
i.e. m(r,0) = m0 ∀r ∈ Ω. In all cases as t → ∞ the magnetization m(r,t) → 0, as it is expected given the
context of the phenomenon we are simulating.

Similarly, the problem of the longitudinal recuperation can be formulated using the diffusion reaction equation
with Robin boundary conditions. The main difference is that now the magnetization goes from a starting value ms

to a reference value m0 as t → ∞. The differential equation that represent this problem is:

∂m1

∂t
= D0∇2m1 −

1

Tb
(m1 −m0) (2)

with D0∇n̂m1 + ρ1 (m1 −m0) = 0 as its boundary condition. Since the problem we are analyzing is linear, all
the simulations will be performed in a way to evolve the magnetization within a unitary interval. By setting m0 to
1 and ms to zero, we will have m1 and m2 ∈ [0,1] - m1 going from 0 to 1 and m2 from 1 to 0 as time goes from
0 to ∞. If we consider a unitary step problem instead of a generic one the magnetization referring to T1 and T2

problems would be identical apart from a multiplicative factor.
The quantities that will be analyzed will be the magnetization of the whole domain normalized by the initial

magnetization in a T2 simulation or the reference magnetization in a T1 simulation. They are defined as:

Mi(t) =

∫
Ω
mi(r,t) dΩ∫
Ω
m0 dΩ

, i = 1,2 (3)

M(t) will be used in every convergence analysis. In the case studies we also analyze the inverse Laplace
transform of M(t), which gives us the T1 and T2 time distributions. This distributions relate directly to the surface-
to-volume ratios of pores in a fast diffusion regime. The inversion problem is usually ill-posed and numerically
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unstable. In order to improve the conditions of these inversions, we add a white noise component to M(t), in a
signal-to-noise ratio of 2000 : 1. Additionally the inversion is performed using Tikhonov regularization, with a
regularization factor set at 0.15.

The equations 1 and 2 cannot be solved analytically for any given pore network. In this work we will use
the Finite Element Method (FEM) to approximate the spatial derivatives, and a number of explicit time-marching
schemes to solve the temporal evolution of the problem.

2.2 Finite element formulation

Consider w(r) : R2 → R to be a sampling function. The weak formulation for the m2 problem is given by:

∫
Ω

∂m2

∂t
w dΩ+

∫
Ω

D0∇m2 · ∇w dΩ+

∫
Ω

1

Tb
m2 w dΩ+

∫
Γ

ρ2 m2 w dΓ = 0 (4)

We will use Galerkin approach, with the shape functions being the same as the sampling functions - in our
case, bi-linear interpolating polynomials.

Let m2 = [m2,i] be the vector of the approximate solution at each node i. The last three integrals in Eq. 4
will compose the stiffness matrix K, whose elements are defined by:

K = [Kij ] =

[∫
Ωi

D0B
T
i Bj +

1

Tb
NiNjdΩi +

∫
Γi

ρNiNjdΓi

]
(5)

where Bi is the gradient of Ni, and Ωi and Γi are the compact support domain and boundary correspondent to the
i-th node. In a element that is not a part of the pore domain’s boundary, the set Γi is empty and the last integral in
eq. 5 does not contribute to K.

The first integral in Eq. 4 will compose the capacitance matrix. We will study two forms for this matrix in
this paper: the so-called consistent capacitance matrix, that has no simplifying hypothesis; and a lumped capac-
itance matrix, where the contributions are independently calculated node-by-node resulting in a diagonal matrix.
Therefore, the former is much more expensive to invert than the latter. Considering C to be a stand-in for either
type of capacitance matrix, the numerical system to be solved is expressed by:

d
dt
m2 = −

(
C−1K

)
m2 (6)

In a similar fashion we can write the residual equation for the m1 problem:

∫
Ω

∂m2

∂t
w dΩ+

∫
Ω

D0∇m2 · ∇w dΩ+

∫
Ω

1

Tb
m2 w dΩ+

∫
Γ

ρ1 m2 w dΓ+

−
∫
Ω

1

Tb
m0 w dΩ−

∫
Γ

ρ1 m0 w dΓ = 0 (7)

where the two last integrals will compose the body force vector - since they do not involve the unknown m1

function. The matrices C and K are identical to the ones used in the m2 problem. The body force and the matrix
system are defined as:

b = [bi] =

[∫
Ωi

1

Tb
Ni m0dΩi +

∫
Γi

ρNi m0dΓi

]
(8)

d
dt
m1 = −

(
C−1K

)
m1 + b (9)
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2.3 Explicit time-integration

Equations 6 and 9 will be solved using two explicit time-marching algorithms. The first is the simplest and
fastest, the Explicit Euler scheme. The second is the Dufort-Frankel scheme.

The Explicit Euler is a first-order time marching scheme, where the derivative in time is replaced by a finite
difference, and the right side of eq. 9 is evaluated at the previous time-step. The nodal magnetization at time t is
then defined as:

mt = mt−1 −∆t
(
C−1K

)
mt−1 + bt−1 (10)

where ∆t is the chosen time step size, and mt is a stand-in for the nodal values of either m1 or m2 at time t. Our
body force vector b does not vary with time, so bt is the same for any t. Notice that this scheme is conditionally
stable. This stability is restrictive, especially due to mesh refinements. For a 2D pore domain, we observed that
this method requires ∆t = O(1/D0 ∆x3) in order to be stable. In our implementation we set the maximum ∆t value
to 0.1/D0 ∆x3 heuristically.

The Dufort-Frankel is a second-order explicit time-marching method that uses a different treatment for the
diagonal terms of C and K in order to achieve unconditional stability [4]. The left side of Eqs. 6 and 9 is
approximated with a central finite difference scheme, between the steps t and t − 2, while the right side of eq. 6
is evaluated at time t − 1. However, the diagonal contribution of these right side terms will be applied to a linear
interpolation of time t and t− 2. The nodal magnetization at time t is then defined as:

mt = C̃−1 (C−∆tKd)m
t−2 − 2∆tC̃−1 (K−Kd)m

t−1 + 2∆tC̃−1b (11)

where C̃ ≡ (C+∆tKd), and Kd is a diagonal matrix composed by the diagonal elements of K - notice that
if we use a lumped capacitance matrix C̃ can be inverted trivially. This method can be applied for any time step
size. However, for large time-steps M(t) may not converge to the correct limiting value as t goes to infinity. This
behavior was analyzed by [6] and was observed in this study.

Since this method requires two time-step solutions in each iteration, we choose to solve the first step using the
Modified Euler method in order to keep the second order convergence. This method will have the same stability
threshold as the Explicit Euler, and therefore a number of sub-steps may be needed to correctly initialize the
solution.

3 Numerical results

In this section we will present convergence and validation studies. In a first moment we will use a 1D gap
model to test the influence of the diagonalization of the mass matrix and successive mesh refinements. In the next
subsection we will use an artificial arrangement of circular pores to test convergence and accuracy of the method
for a fast diffusion problem.

Numerical convergence analysis were performed by measuring the deviation ε of the average magnetization
between two simulations, in infinity norm. Each time, one discretization parameter is changed (i.e. mesh, time-step
size, or type of capacitance matrix) while the remainder are held constant.

3.1 One dimensional gap model

This simple model, described in the figure below, is used to investigate the influence of the type of capacitance
matrix and the influence of successive mesh refinements. The process of time integration with the consistent matrix
demands the solution of a linear system in each step of the simulation, therefore being very expensive. This simple
model, being able to be well represented by a minimal mesh, is useful to perform this kind of comparison.

Four parameter sets and were considered: {(D0/ρL, Tb)i} = {(100,0.1),(100,∞),(10,∞),(1,∞)}. All of
them are considered with time going from zero to one second, length L = 1µm, ρ = 10µm/s, and homogeneous
unitary initial condition for the T2 relaxation problem. In the comparisons shown in this section, the T1 problem
present equivalent behavior both qualitatively and quantitatively. Five different mesh sizes were consider, for all
parameter sets, with the number of divisions Nx going from 2 to 32 divisions in L.
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D0, Tb

2L

ρ1,2 ρ1,2

Figure 1. One dimensional gap model.

Table 1. Numerical deviation with matrix type and mesh size for the one-dimensional gap problem. The time
integration was performed with the Explicit Euler method and approximately 2million time steps.

Deviation w/ matrix type

Nx (100, 0.1s) (100,∞) (10,∞) (1,∞)

21 3.91×10−6 3.98×10−6 5.93×10−5 9.30×10−5

22 3.19×10−7 3.21×10−7 2.05×10−5 1.06×10−4

23 2.11×10−8 2.12×10−8 1.95×10−6 5.20×10−5

24 1.34×10−9 1.35×10−9 1.31×10−7 5.96×10−6

25 8.44×10−11 8.45×10−11 8.35×10−9 5.46×10−7

Deviation w/ mesh size

Nx (100, 0.1s) (100,∞) (10,∞) (1,∞)

21 1.72×10−4 3.44×10−4 3.38×10−3 2.80×10−2

22 1.36×10−4 2.73×10−4 2.69×10−3 2.43×10−2

23 7.44×10−5 1.49×10−4 1.48×10−3 1.40×10−2

24 3.80×10−5 7.61×10−5 7.59×10−4 7.38×10−3

Table 1 is a summary of the numerical deviation between simulations. As we can see, the deviation with mesh
size is order of magnitudes greater than the deviation caused by the change of matrix. In both cases, problems
with slow diffusion (which present greater spatial gradients) present overall larger deviations with refinement -
indicating that they need a relatively more refined mesh. These results indicate to us that the use of a lumped
capacitance matrix is appropriate for the simulations.

3.2 Artificial porous media

The test case that we chose to showcase here is an artificial media with three pore sizes, all of them covering
a similar area on the image. This medium is presented in the image below. It is a 200×200 pixel image with 1µm
resolution and we consider a fluid with ρ1 = 5µm/s, ρ2 = 10µm/s, D0 = 2500µm2/s and no bulk relaxation.
The simulated domain is shown in Figure 5.

Figure 3 shows the decay simulated with the Dufort-Frankel method and 8103 time steps and Figure 4 shows
the ILT for the two signals. The time levels on the graph were the expected ones given by the surface-to-volume
ratio of the pores, indicating good agreement.

The figure below shows the convergence of the numerical solution with the number of time steps. As we
can see, an acceptable result (≈ 0.1% deviation) can be achieved by thousands of time steps fewer using the
Dufort-Frankel instead of the Explicit Euler method - which has a severe limitation due to stability requirements.
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Figure 2. Artificial porous medium composed of three sizes of circular pore.
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Figure 3. M1 and M2 decays for the artificial porous medium.
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Figure 4. T1 and T2 distributions for the artificial porous medium. The time labels refer to the expected relaxation
times calculated using the area and volume of the circular pores, in a fast diffusion scenario.
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Figure 5. Numerical convergence with time-step size. The single Explicit Euler point is the beginning of stabillity.
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4 Conclusion and future work

This work is part of an ongoing larger project, that aims to build massively parallel FEM implementations on
GPU’s to efficiently solve large image-based problems petrophysics problems.

This study shows that the use of a lumped mass system can solve the transient NMR problems efficiently
without the need for either storing an additional matrix or the solution of linear systems in each time-step.

Additionally, hyperbolization methods like the Dufort-Frankel add a negligible amount of numerical error in
exchange for unconditional stability. An the added error due to the hyperbolic effects diminishes with the reduction
of the time step size, being negligible with time step sizes thousands of times smaller than the ones required by
traditional explicit methods.

The next step in this study is to combine this fully explicit approach with a matrix-free methodology [7] to
save memory in GPU implementations, and step towards 3D simulations.
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