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Abstract. In structural analysis, the possible geometrical configurations of the structure are fundamental for the
choice of the coordinate system to be used and, consequently, for the determination of solutions. The structural
problem description through an appropriate coordinate system allows us to visualize aspects that would not neces-
sarily be observed in another coordinate system. In this sense, the correct specification of the coordinate system
is important and necessary. The most general coordinate system, of which all others are particular cases, is the
general curvilinear coordinate system. Simultaneously, differential equations are widely used to model problems
in structural engineering. In the solution of a differential equation, the finite difference method plays an important
role, promoting the discretization of space by a mesh of discrete points, with the unknown functions and their
derivatives being replaced by approximations at the grid points through difference quotients. In particular, the
analysis of contact problems between a structure and a deformable foundation is an essential task in civil engineer-
ing, with crucial use in different support systems. Undoubtedly, thin axisymmetric shells are structural elements
widely used in structural engineering, especially when interacting with elastic or inelastic means. The main objec-
tive of this work is to develop a computational tool for the study and analysis of problems under bilateral contact
constraints, involving axisymmetric shells and elastic means, using the approximations derived from Sander’s the-
ory for slender shells. General equations applicable to any coordinate systems are developed. As an application
example, a slender cylindrical shell supported on soil (elastic foundation) is used.
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1 Introduction

This paper presents a numerical methodology for obtaining the structural behavior of axisymmetric shells
with contact constraints. Analysis of contact problems between a construction and a deformable foundation is an
essential task in civil engineering, with crucial use in different structural systems. Fundamentally, the structures
are built in soil/rock formations, and the loads that operate in the structures are transmitted to the support site
through the foundation elements, causing deformation in the support of the structure which, in turn, modifies the
tensions in the whole. In this sense, the analysis of the structure-foundation systems lies in soil/rock response to
the applied loads, in the contact region, with the inclusion of the foundation reaction in the differential equation
associated with the problems involving beams, plates or peels [1, 2].

Axisymmetric structures constitute a part of substantial engineering constructs. Such conformations com-
prise, for example, conductive tubes, reservoir, cooling towers, cylindrical containment compositions, chimneys
and roofs. Essentially, axisymmetric geometries have an axial symmetry axis, regardless of the circumferential
coordinate. A structure with axisymmetric configuration allows significant simplifications to be performed by
investigating the deformation that occurs on the reference surface [3].

Shell is a three-dimensional object with one of the three dimensions much smaller than the other two. The
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geometry of a shell is specified from the reference surface, thickness and contours. Generally, the shell thickness
is a variable amount at each point. However, in this work, shells with constant thickness are used as the study
structure. In this sense, the middle surface is taken as the reference surface because, in addition to determining the
shape of the shell, it specifies, at all points of the structure, the states of strain and stress.

In structural analysis, the possible configurations of the structure are fundamental for the choice of the co-
ordinate system to be used and, consequently, for the determination of possible solutions. The description of a
problem based on an adequate coordinate system makes it possible to visualize aspects that would not necessarily
be observed in another coordinate system. In this sense, the correct specification of the coordinate system is im-
portant and necessary. The most general coordinate system, of which all others are particular cases, is the general
curvilinear coordinate system, described by the coordinates Θ1, Θ2 and Θ3. In this system, all coordinate lines are
curved – called coordinate curves – and can form any angle with each other.

The interaction action between structures and elastic foundations is of fundamental importance in foundation
design and it has always attracted the attention of both researchers and engineers. The mathematical model used
to represent the foundation depends on the application considered, with the determination of the contact pressure
between the parts being the main difficulty of the analysis in the interaction between the soil and the structure.
Among the methods commonly applied to investigate structural systems, there are those that adopt numerical
modeling, with emphasis on those that consider the foundation an elastic medium, especially models that use
discrete springs. The study of the contact between axisymmetric shells and elastic base is based on the way in
which the interaction between these elements occurs. In this sense, the permanent fixation of the parts, without
loss of contact, characterizes the problem of bilateral contact (PCB) (Fig. 1) [4, 5].

Deformed
shell

q(Θ1,Θ2)

Figure 1. Problem of bilateral contact.

Problems involving axisymmetric shells supported by elastic bases can be solved using numerical methods
associated with computational methods. In this sense, the finite difference method (FDM) provides results close
to those considered real [6]. This work is based on the finite difference formulation to approximate the derivatives
present in the equations obtained in Section 2. The process of discretization of space takes into account the
organization of the chosen points, thus defining the mesh of finite differences. Depending on the arrangement
imposed, the mesh can be composed of structures of different formats, the most common being squares, rectangles
and triangles, always in line with each specific problem and methodology used.

In this article, the general mathematical structure is presented. Bilateral contact problems between shells and
elastic bases are solved using the finite difference method. Cylindrical shells are used as an application of general
equations.

2 Theoretical Formulation

2.1 Thin Axisymmetric Shells

The development of thin axisymmetric shells theory is based on the understanding of surface theory, since the
shell geometry is specified from the reference surface. Therefore, the fundamental forms are extremely important
and useful in determining the metric properties of a surface, such as line element, area element, normal curvature,
gaussian curvature, and mean curvature. The first fundamental form allows the calculation of metric quantities and
the second fundamental form establishes how a surface is curved [7].

The points that belong to the surface are expressed as functions of the curvilinear coordinates Θ1 and Θ2.
The union of these curves coordinate generates a surface, where each point is determined by the intersection of
these curves coordinate. From the two fundamental forms, the geometric description of a surface with respect to
curves Θ1 and Θ2 is made by the two Lamé parameters, h1 and h2, determined by the module of vectors tangent
to curves coordinate, and the two principal radii of curvatures, R1 and R2.
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The shell geometry is represented by its reference surface and described by a system of orthogonal curvilinear
coordinates Θ1, Θ2 and ζ. The quantities of interest are determined for reference surface points as functions of the
curvilinear coordinates Θ1 and Θ2, and, therefore, defined for any other surface of the shell, from a small distance
ζ (Fig. 2). Thus, deformations of any point can be expressed in terms of the surface parameters in which it is
found that, in turn, are determined from the reference surface. A shell is said to be thin when the ratio between the
thickness t and the radius of curvature R can be neglected when compared to unity.
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Figure 2. Quantities of interest in the shell element.

The theory of the thin shell is obtained from the three dimensional elasticity, with a few simplifying assump-
tions, known as Love’s first approximation. These assumptions simplify the three-dimensional relations, that are
converted into two-dimensional ones. In a system of orthogonal curvilinear coordinate, the deformations εij at any
point in the thin shell are:

ε11 = ε011 + ζ χ11, ε22 = ε022 + ζ χ22, ε12 = ε21 = ε012 + 2ζ χ12,

ε33 = 0, ε13 = ε31 = 0, ε23 = ε32 = 0,
(1)

where ε0ij represent the change in the length of the shell elements on the reference surface, while the terms χij

constitute the changes in curvatures and the twist of the reference surface. Indexes 1, 2 and 3, indicate the directions
to Θ1, Θ2 and ζ, respectively. Using the approach of Sanders [8], the terms ε0ij (Eqs. 1) are:

ε011 = ε10 +
1

2

[
(βn)

2 + (β1)
2
]
, ε022 = ε20 +

1

2

[
(βn)

2 + (β2)
2
]
, ε012 = ω1 + ω2 + β1β2, (2)

where βi and ωi represents rotations in the reference surface.
Obtaining the static equilibrium equations of a thin shell takes into account a shell element limited by four

normal cuts to the reference surface. By establishing such equations, it should be considered not only the dimen-
sional changes of the element, but also the fact that, due to the curvature of the curves Θ1 and Θ2, the forces
acting on the element faces may have components in different directions from those cited nominally. The analysis
of static equilibrium conditions takes into account the action of a set of forces on the investigated shell and the
balance consideration in any parts of the structure. The resultant vector of all internal and external forces acting
on an element of the shell must be vanish, just like the resultant moment of all forces. The six forces per unit of
length T1, T12, N1, T2, T21, N2, the four moments per unit of length M1, M12, M2, M21, and the external force q,
acting on a unit area of the middle surface, characterize completion the state of tension and are shown in Fig. 3.
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(a) Forces in the shell element.
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(b) Moments in the shell element.

Figure 3. Forces and moments in the shell element.
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From equilibrium conditions for forces and moments, it is found:

1

h1h2
[∂1(h2T1) + ∂2(h1T21) + ∂2h1T12 − ∂1h2T2] +

N1

R1
+ q1 + rb1 = 0, (3)

1

h1h2
[∂1(h2T12) + ∂2(h1T2) + ∂1h2T21 − ∂2h1T1] +

N2

R2
+ q2 + rb2 = 0, (4)

1

h1h2
[∂1(h2N1) + ∂2(h1N2)]−

T1

R1
− T2

R2
+ q3 + rb3 = 0, (5)

1

h1h2
[∂1(h2M1) + ∂2(h1M21) + ∂2h1M12 − ∂1h2M2]−N1 = 0, (6)

1

h1h2
[∂1(h2M12) + ∂2(h1M2) + ∂1h2M21 − ∂2h1M1]−N2 = 0, (7)

T12 − T21 +
M12

R1
− M21

R2
= 0. (8)

where rbi is the pressure exerted by the elastic foundation.
Assuming that the material obeys Hooke’s law, isotropic, and following Love’s first approximation, the stress-

strain relations for a three-dimensional thin axisymmetric shells are:

σ11 =
E

1− ν2
(ε11 + νε22), σ22 =

E

1− ν2
(ε22 + νε11), σ12 = σ21 =

E

2(1 + ν)
ε12, (9)

where E, G, and ν are the elastic modulus, shear modulus, and Poisson’s ratio of the shell material, respectively.

2.2 Elastic Foundations

The mathematical model used to represent the foundation depends on the application considered, being the
determination of contact pressure between the parts the main difficulty of analysis in the interaction between the
ground and the structure. Among the methods commonly applied for the investigation of the structural system are
those who use numerical modeling, especially those who consider the foundation an elastic medium, especially
the models that use discrete springs. In such approximations, the behavior of the elastic foundation is modeled
using (i) a parameter, where soil-structure interaction is represented by independent discrete springs that associate
its rigidity with the properties of elastic foundation material, (ii) two parameters, in which the interaction between
the springs is added [1].

The simplest mechanical model was proposed by Winkler in 1867 [9]. In this representation, the pressure
exerted by the base at a given point is directly proportional to deflection on site. Mathematically:

rb(Θ
1,Θ2) = kBwb(Θ

1,Θ2), (10)

where kB is the foundation modulus and wb(Θ
1,Θ2) is the deflection. As soil may exhibit considerable interaction

action among its elements, the Winkler springs have inherited deficiency in simulating such behavior. Pasternak
assumes the existence of shear interactions between the spring elements [10]. Mathematically:

rb(Θ
1,Θ2) = kBwb(Θ

1,Θ2)− kM ∇2wb(Θ
1,Θ2), (11)

where the second term on the right-hand side is the effect of the shear interactions of the vertical elements.

2.3 Spatial Discretization

The partial differential equations for shell element (Eqs. (3) - (8)) are solved here by the finite difference
method. This method promotes the discretization of space by a mesh of discrete points, with unknowns and their
derivatives being replaced by approximations at the points of the grid through difference quotients. Characteristi-
cally, for each nodal point, a set of algebraic equations is obtained.

The process of discretization of space takes into account the organization of the stitched points, thus defining
the mesh of finite differences. Depending on the arrangement imposed, the mesh can be composed of structures of
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different shapes, the most common squares, rectangles and triangles, always depending on each specific problem
and methodology used. Figure 4 schematizes the finite difference meshes in the curvilinear coordinate system for
the pivotal point (i, j).

(i − 2, j)

(i − 1, j)
(i, j) (i + 1, j)

(i + 2, j)

(i, j − 2)

(i, j − 1)

(i, j + 1)

(i, j + 2)

∆Θ1

∆Θ2

Figure 4. Finite difference meshes in the curvilinear coordinate system for the pivotal point (i, j).

3 Applications

3.1 Solution Strategies

The numerical strategies used in this work for the approximate solution of bilateral contact problems have as
main characteristics:

i. The use of the finite difference method (FDM), which replaces the original domain of the bodies (structure
and elastic base) and their respective contours with a mesh. As a consequence, the algebraic equation system
that governs the PCB is reached;

ii. After this system discretization, the solution of the problem can be directly achieved by this system of
algebraic equations;

iii. The computer program used for numerical simulation was made in the Fortran 90 language.

3.2 Example

As an example of application, a thin cylindrical panel is used, since cylindrical panel is a particular case of
thin cylindrical shells (thin axisymmetric shell), with extensive radius and opening angles of less than 30◦. For that,
the cylindrical curvilinear coordinate system is used to write strain-stress relationships and equilibrium equations.
To obtain the fundamentals equations for the study a thin cylindrical shell, according to the scope of this work, it
is convenient to introduce the following definitions (Fig. 5):

Θ1 ≡ x, Θ2 ≡ θ, Θ3 ≡ R. (12)

With this, the correspondence between the general curvilinear coordinates and the cylindrical coordinate system is
made by:

1 → x, 2 → θ, 3 → R. (13)
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Figure 5. Cylindrical curvilinear coordinate system. The unit vectors ĝ1, ĝ2 and ĝ3 indicate the coordinated
directions.

The numerical example consists of a rectangular panel of 7.2 × 14.4m2 subject to a distributed loading of
2.394×104 N/m2 [11]. Some adaptations had to be done to bring the problem analyzed in the literature. Firstly, a
1000m radius of the cylindrical panel was considered to resemble the flat plate. Second, the use of simple supports
on smaller sides was adopted, as this program does not allow the use of free edges on the four sides. The base used
by Straughan follows Pasternak’s model, with kB = 1.2993MN/m3 e kM = 2.54652MN/m. In this case, was
used E = 20.684GPa, ν = 0.0 and t = 0.15m.

Figure 6 presents the radial displacement found at points located on a line passing in the middle of the panel,
parallel to the smaller sides (simply supported). To model the structural system (shell and foundation) two meshes
with 13×25 and 21×41 discrete points each were used. The results show a difference between these meshes in the
computational domain. As observed, all grids give the same behavior of results obtained by Straughan [11], with
better approach to the mesh with 13 × 25 nodes. There is a good approximation of the deformed configurations,
mainly in the center of the structure, with the differences observed from the rigidity gain provided by the differences
in contour conditions (free to simply supported). In addition, can be observed in this example that the adoption
of the Winkler model – using only the first kB parameter –, besides offering less opposition to the displacement,
unlike the two parameters model. It also provided little stiffness to the shell-base system (it is observed that the
graph’s displacement line showed a very smooth curvature, almost straight). This behavior is expected, even in the
case of this problem, which has a relationship between kB and kM of reasonable size (kB/kM = 0.51).
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Mesh 21x41 (Winkler)
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Figure 6. Radial displacement in a smooth curvature panel on an elastic base.

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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4 Conclusions

This work has developed a computational tool for the study and analysis of problems involving cylindrical
panels with bilateral contact restrictions imposed by elastic bases. It was also the object of study the use of
the FDM as a tool for discretion of the continuum, transforming the differential equations of both the shell and
the basis models into algebraic equations. The finite difference method showed efficiency in discretization of the
structural problem, presenting ease of implementation of both cylindrical shell theory and also elastic basic models,
characterized as an alternative viable to other numerical methods. For the example studied, the main models of
elastic bases were used, highlighted the two most common types: one or two parameters.
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