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Abstract. Multiphase flows occur in several industrial sectors, such as oil and natural gas production and transport.
Its understanding gives several technical and economic advantages. Gas-liquid flows are often grouped into three
main patterns: dispersed, separated, and intermittent. A succession of liquid pistons (aerated or non-aerated) and
elongated gas bubbles parallel with a thin liquid film that repeats itself over the pipe in a non-periodic way describes
the intermittent or slug flow. These flows can occur in a steady state considering the unit cell concept. Thus, the
hydrodynamic parameters of this kind of flow can be estimated using several models developed based on this
concept. This work aims to solve numerically one of the models more complete for film profile estimation using a
fourth-order Runge-Kutta method. A computational code is being written in MATLAB to implement the film profile
model and the empirical correlations for estimating the closure parameters. The numerical results obtained for the
film and piston lengths were compared with experimental data from the literature to validate the model solution
employed. In addition, liquid film (or elongated gas bubble) profiles were plotted graphically for visualization and
comparison with descriptions presented in the literature.

Keywords: two-phase flow, slug flow, modeling, numerical analysis.

1 Introduction

Multiphase flow is exhibited in diverse situations in nature and many processes, for example, combustion in
engines, propulsion systems, fluids in the human body, nuclear power generation, transport of oil and gas, and food
production, among others [1]. Thereby, methods to estimate its behavior are essential. Among the possible shapes
that multiphase flow can show, three primary patterns appear when a gas-liquid mixture occurs: dispersed, separated,
and intermittent. These patterns develop depending on the characteristics of the phases considered and their physical
properties, the pipe geometrical properties (diameter, inclination, and roughness), and initial operating conditions,
such as the flow rates of each phase. Among these shapes, the intermittent gas-liquid flow (slug flow) is present
in various processes, as it is found in a broad set of gas and liquid flow rates. Therefore, there is an overall effort
to develop a capable physical model that accurately represents its behavior, despite the dependence on empirical
correlations [2].

Intermittent flow is characterized by liquid pistons (slugs), with or without dispersed gas bubbles (depending
on operating conditions), followed by elongated gas bubbles containing a well-defined contact interface with a
liquid film. Along the pipe is a repetition of this structure consequent from this pattern. Wallis [3] proposed an
approach in which the intermittent flow regions constitute two distinct patterns: dispersed flow for the liquid slug
and separate flow for the elongated gas bubble. Thus, the unit cell concept arises, assuming that this structure occurs
as a phenomenon in steady-state, which is periodically repeated along the pipe, which resulted in the development of
mathematical models that allowed an improved understanding of the dynamics in intermittent flow and its pertinent
parameters.

Dukler and Hubbard [4] developed the first of these models, considering the flow to be one-dimensional and
with negligible pressure drop along the elongated bubble length. Furthermore, the mass and momentum balances do
not consider the gas phase influences. In this way, a free surface serves as a model for the film in the elongated
bubble region.

Later, Gregory et al. [5] detected the need for a term that thoughtful the elongated bubble drift velocity relative
to the film. This velocity significantly influences the model, making the hydrodynamic differences noticeable
compared to an elongated bubble moving in stagnant liquid, especially in relatively wide pipes with slight inclinations.
In addition, they related the velocity of the elongated bubble nose with the mixture superficial velocity.
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Kokal and Stanislav [6] found the dependence of pressure drop on flow patterns in their work and presented an
unprecedented model that considers the shear stress at the interface between an elongated bubble and its respective
film. However, they did not feel the shear stress of the elongated bubble with the pipe wall. Their results exhibited
satisfactory agreement with experimental data, mainly for higher gas flows, compared to preceding models, which
did not consider the influence of interfacial shear stress.

These models had an extraordinary evolution in the work of Taitel and Barnea [7], which still stands today as a
reference in finding results for intermittent flow. Their model developed is regarded as the most complete, serving
as a basis for improvements proposed over the years since then; because, for the first time, the model considers the
effects of the gas phase. These effects are present both in the elongated bubble, taking into account the shear stress
of the bubble with the pipe wall, and in the liquid slug, where little dispersed bubbles may interact with the liquid
phase, presenting velocity different from the same.

Trying to improve the Taitel and Barnea [7] model and the closure correlations, Andreussi et al. [8] highlighted
that the presence of dispersed bubbles in the film is significant for air-water flows at high velocities and, possibly,
more applicable for liquids with low surface tension. This phenomenon may be relevant in determining the average
fraction of liquid present in a unit cell. Thus, they considered the presence of two distinct gas streams in their model,
in the elongated bubble and another dispersed in the film.

Cook and Behnia [9] concluded in their work that the accuracy of the results, based on the model of Taitel and
Barnea [7], heavily influences the choice of correlation for calculating the translational velocity of the elongated
bubble. Considering this velocity is around 1.2 times the value of the mixture’s superficial velocity, it becomes
possible to obtain more consistent results. Furthermore, their model disregarded gravity’s influence on the gas phase.
They analyzed the pressure gradient separately for each phase so that the terms related to the buoyant force are
functions of gas and liquid densities.

The work of Fagundes Netto et al. [10] contributed to a better understanding of the intermittent flow structure
and its development along the pipe, achieved by examining the influence of the flow velocity and the bubble volume
on its shape. They also proposed a model that considers the elongated bubble to consist of four parts: the nose, the
body, the tail, and a hydraulic jump between the tail and the body. This hydraulic jump represents a rapid change in
film thickness, causing a static pressure difference.

Cook and Behnia [11] proposed a reformulation of the Taitel and Barnea [7] model, adding a term due to the
effective viscosity of the aerated liquid slug in the pressure drop calculation. Orell [12] found in their experimental
study that this term is significant for high superficial velocities of the gas phase, especially for air-oil systems.

This work aims to compare the results obtained with the Taitel and Barnea [7] model against experimental
data from the literature for the liquid film length. A computational code developed in MATLAB® in the present
work performs the numerical integration of the model and the calculation of all related parameters.

2 Model

Considering an isothermal gas-liquid mixture (with known physical properties of the phases: density ρ,
dynamic viscosity µ, and surface tension σ) flowing with volumetric flow rate Q in a pipe of length L, diameter D,
perimeter S, area A, and inclination θ, the unit cell has a length LU , resulting from the sum of LF and LS , which
represent the lengths of the film and the slug, respectively. Figure 1 shows a representation of this flow pattern.
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Figure 1. Representation of the model and its variables [13].
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The physical modeling employs the unit cell model proposed by Taitel and Barnea [7], based on the discussion
given by Shoham [2]. Taitel and Barnea [7] sought to unify a model applicable to flows in pipes with any inclination,
proposing three approaches studying film hydrodynamics, two of which assume simplifying hypotheses. The
first takes an equilibrium and constant film thickness along the region of the elongated bubble and the film:
HF ≡ HFe = constant and −(dp/dz) ̸= 0. The second assumes a free surface open-channel flow for the film:
HF ̸= constant and −(dp/dz) = 0. The third presents a more precise description that requires the numerical
solution of a more detailed equation to estimate the film profile, with HF ̸= constant and −(dp/dz) ̸= 0, which is
the approach used in the present work and defined by Eq. (1):

dHF

dzF
=

τWFSF

AF
− τWCSC

AC
− τISI

(
1

AF
+ 1

AC

)
+ (ρL − ρG) g sin θ

(ρL − ρG) g cos θ −
[
ρL

(UT−UF )2

ϕF
+ ρG

(UT−UC)2

1−ϕF

]
SI

A

(1)

From the numerical integration procedure of Eq. (1), shown in Section 2.1, the liquid phase mass balance in Eq. (2)
must be satisfied to obtain the length of the film LF (or the elongated bubble).

JL = USϕS + f

[
(1− ϕS)LF −

∫ LF

0

(1− ϕF ) dzF

]
(2)

Where the liquid superficial velocity is JL (≡ QL/A), just as the gas superficial velocity is JG (≡ QG/A).
Carvalho and Lima [14] analyzed the accuracy of various empirical correlations against experimental data of

unit cell frequency f (≡ UT /LU ), and one of the best was that of Fossa et al. [15], defined in Eq. (3):

f =
JG
D

(
0.044λL

1− 1.71λL + 0.70λ2
L

)
(3)

Where λL (= JL/J) is the homogeneous liquid holdup (fraction).
The shear stresses of the phases with the pipe walls must be expressed using the local velocities of the phases,

according to Eqs. (4) and (5). On the other hand, the interfacial shear stress considers the relative velocity between
the phases, according to Eq. (6).

τWF =
1

2
CfF ρL|UF |UF (4)

τWC =
1

2
CfCρG|UC |UC (5)

τI =
1

2
CfIρG|UC − UF | (UC − UF ) (6)

The Blasius correlation for hydraulically smooth pipes can be employed to determine the friction factors (Fanning)
of the phases, defined in Eqs. (7) and (8) (with: m = 16 and n = 1 if laminar; m = 0.046 and n = 0.2 if turbulent);
but for rough pipes, there are several other correlations in the literature for this. The interfacial friction factor can be
estimated using Eq. (9), which may depend on the dimensionless film thickness δF (≡ HF /D).

CfF = m

(
UFDF ρL

µL

)−n

(7)

CfC = m

(
UCDGρG

µG

)−n

(8)

CfI =

{
0.014 if flat film [16, 17]

0.005 (1 + 300δF ) if concentric film [3]
(9)

The kinematic law proposed by Nicklin [18] adequately models the translational velocities of the elongated
bubble UT and the bubbles dispersed in the liquid slug UB as a function of the mixture superficial velocity J
(≡ JL + JG), according to Eqs. (10) and (11), respectively:
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UT = C0TJ + V∞T ≡ C0TJ + Fr∞T

√
gD (1− ρG/ρL) (10)

UB = C0BJ + V∞B ≡ C0BJ + Fr∞B

√
gD (1− ρG/ρL) (11)

Table 1 presents the definitions for the distribution parameters, C0T and C0B , and the drift Froude numbers,
Fr∞T and Fr∞B , of the elongated bubble [19, 20] and the dispersed bubbles [21], presented in Eqs. (10) and (11),
as a function of the Eötvös and Froude numbers for the mixture, defined as Eo = gD2(ρL − ρG)/σ and Fr =
J/

√
gD(1− ρG/ρL), respectively.

Table 1. Definitions for distribution parameters and drift Froude numbers considering turbulent flow [13].

Bubble(s) k C0k Fr∞k Criterion
Elongated T 1 + 0.2 sin2 θ

(
0.542− 1.76

Eo0.56

)
cos θ + 0.345 sin θ

(1+3805Eo−3.06)
0.58 Fr < 3.5

1.2 0.345 sin θ

(1+3805Eo−3.06)
0.58 Fr ≥ 3.5

Dispersed B 1 + 0.2 sin2 θ 1.54Eo−1/4ϕ
7/4
S sin θ –

Mass balances and definitions of relative velocities provide expressions for the average velocities of liquid in
the slug, film, and gas in the elongated bubble, according to Eqs. (12) to (14), respectively:

US =
J − UB (1− ϕS)

ϕS
(12)

UF = UT − (UT − US)ϕS

ϕF
(13)

UC =
J − UFϕF

1− ϕF
(14)

Barboza et al. [22] analyzed the accuracy of various empirical correlations against experimental data of slug
liquid holdup ϕS , and one of the best was that of Xu [23], defined in Eq. (15):

ϕS =

[
1 +

(
J

9.514

)1.274
]−1

(15)

The film holdup ϕF (liquid fraction in the elongated bubble region) is defined from the geometrical relations
of the interfaces. As well as perimeters Sk, areas Ak, and hydraulic diameters Dk of the phases or regions k
(= G,F, I), according to Tab. 2. These geometrical properties are functions of the angle resulting from the flat
interface, defined as θI = 2arccos(1 − 2δF ), or directly in terms of the dimensionless film thickness δF , for a
concentric interface.

Table 2. Geometrical properties of interfaces [13].

Geometrical Interface
properties Flat Concentric
SC D (π − θI/2) 0

SF DθI/2 πD

SI D sin (θI/2) πD (1− 2δF )

AC D2 (2π − θI + sin θI) /8 πD2 (1− 2δF )
2
/4

AF D2 (θI − sin θI) /8 πD2δF (1− δF )

DG D
[
1 + sin(θI/2)−sin θI/2

2(2π−θI+sin θI)

]−1

D (1− 2δF )

DF D (1− sin θI/θI) D [4δF (1− δF )]

ϕF (θI − sin θI) / (2π) 4δF (1− δF )
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2.1 Numerical solution procedure

In Equation (1), all terms vary along the axial coordinate zF . Still, the physical properties of the fluids and
the pipe characteristics are constant at each integration step i, as well as the cell frequency and the slug holdup.
The integration process of Eq. (1) to obtain the profile of the film thickness, HF = HF (zF ), was performed using
the fourth-order Runge–Kutta method, and together with the model equation, auxiliary equations, and empirical
correlations were implemented in a computational code developed in MATLAB®. The integration starts at the
bubble nose and marches along its length until Eq. (2) is satisfied; consequently, the total film length, LF , is reached.
Shoham [2] suggests HF0 ≈ ϕSD as the initial condition for the film thickness, i.e., the initial film holdup ϕF is
equal to the average slug holdup ϕS in front of this film. The definition of the initial value problem corresponds:

dzF
dHF

= F (HF , zF ) , zF (HF0) = 0 (16)

Moreover, as the bubble lies on the pipe upper part, HF always diminishes as zF distance increases until
it reaches an equilibrium value HFe, i.e., (dHF /dzF ) → 0. Unfortunately, some flow conditions result in
(dHF /dzF ) > 0, which is discrepant with the physical evidence. Still, it must be related to the inflection point at
the bubble nose, as seen in Fig. 1. To define HF0 for these flow conditions, it has to be decreased gradually until
(dHF /dzF ) < 0 are encountered [7, 9, 10]. Using a step-size ∆HF > 0, such that HF,i+1 = HF,i −∆HF , and it
is calculated:

zF,i+1 = zF,i −
∆HF

6
[k1 + 2 (k2 + k3) + k4] ,


k1=F (HF,i, zF,i)

k2=F
(
HF,i − ∆HF

2 , zF,i − k1
∆HF

2

)
k3=F

(
HF,i − ∆HF

2 , zF,i − k2
∆HF

2

)
k4=F (HF,i −∆HF , zF,i − k3∆HF )

(17)

3 Analysis method

The determination of the relative deviation modulus ϵR between the calculated and measured values for the
dimensionless film length LF /D is the base of the accuracy analysis of the unit cell model. Also, this analysis
considers the RMS (Root Mean Square) values of the relative deviations referring to the total number of experimental
tests. The experimental data used in this work comes from other work found in the literature. Bueno [24] conducted
ten experiments using air and water as a mixture in a horizontal test section of 306D length and 26 mm inner
diameter. The experimental apparatus consists of the flow in two separate circuits of air and water carried to a
mixer to constitute the two-phase flow. After, it passes through the acrylic test section, where two different stations
measure the data downstream of the mixer, one 77D and another 257D. At these stations, impedance sensors
monitor the intermittent flow data, and a data acquisition system obtains and processes the data. After going through
the test section, a vertical pipe of 75 mm inner diameter acts as an air and water separator for the mixture discharged
into this pipe. Table 3 presents the intervals of the variables determined in the experiments by Bueno [24].

Table 3. Variables intervals of the experimental dataset of the Bueno [24].

JG / (cm/s) JL / (cm/s) JG/JL λL P / (mbar) LF /D N

30.2−142.1 29.0−121.0 0.47−4.90 0.17−0.68 982−1058 7.5−140.2 10

The properties of the fluids are necessary to start the numerical integration of the unit cell model come
from literature, considering the operational conditions of the Bueno [24] experiments: atmospheric pressure of
Patm = 947 mbar and ambient temperature T = 25 °C. The ideal gas state equation estimates the air density,
considering this ambient temperature and the local absolute pressure at each experimental test.

4 Results and discussion

Figure 2 shows the profiles of the dimensionless liquid thickness δF as a function of the non-dimensional axial
coordinate zF /D for each test condition of the Bueno [24] experimental dataset. Each profile in Fig. 2 corresponds
to a homogeneous liquid holdup λL of all tests of the Bueno [24] experimental dataset. Five tests with λL < 0.5
(Fig. 2a) and five tests with λL ≥ 0.5 (Fig. 2b). These λL values are the result of distinct combinations of gas and
liquid superficial velocity values, although some are very close.
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Figure 2. Profiles of the dimensionless liquid thickness as a function of the non-dimensional axial coordinate:
a) λL < 0.5; b) λL ≥ 0.5.

Figure 2 demonstrates that the dimensionless film length LF /D decreases with the increase of the homogeneous
liquid holdup λL, as expected from both theory and literature. In addition to λL, the dimensionless film thickness
δF strongly depends on the gas-liquid ratio JG/JL, defining the film profile. Table 4 shows the relative deviation
modulus ϵR between the calculated and measured values for the dimensionless film length LF /D. The RMS value
of the relative deviations was 14.08%, considering all data.

Table 4. Relative deviation modulus between the calculated and measured values for the dimensionless film length.

λL 0.17 0.25 0.34 0.35 0.39 0.50 0.52 0.53 0.66 0.68

ϵR / (%) 22.60 4.34 1.76 0.70 10.77 6.00 3.01 5.37 0.66 35.47

Moreover, the model integration problem in the bubble nose region, described in Section 2.1, is highlighted,
resulting in relatively small initial film thicknesses depending on the gas-liquid ratio, which also influences the film
length and thickness along the bubble body.

5 Conclusions

This work presents a numerical solution of the film profile model for intermittent gas-liquid flows, using the
unit cell model proposed by Taitel and Barnea [7]. The Fossa et al. [15] correlation for the cell frequency with the
correlation Xu [23] for the slug holdup presents satisfactory results in the model integration procedure compared
with the experimental data.

This analysis verified that the length and thickness of the film depend on the homogenous liquid holdup and
gas-liquid ratio, demonstrating that the model results agree with both theory and literature. Therefore, all bubble
shapes also vary according to these parameters, but the initial condition of the film thickness significantly influences
the bubble nose shape; consequently, the film length as a result of the mass balance employed to finish the integration
procedure of the model.

Future works can improve the modeling and integration process to solve the bubble nose region with better
precision. Also, to analyze the influence of other closure parameters in the model and the employment of severe
conditions can be realized.
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