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Abstract. Backcalculation is a procedure used to estimate stiffness properties (resilient modulus) of asphalt 

pavement layers through non-destructive tests. The resilient modulus of each pavement layer is adopted as the one 

that produces the simulated deflections closest to the deflections obtained in field tests. This paper presents an 

efficient backcalculation approach based on the minimization of the sum of squared errors between the measured 

field deflections and deflections obtained using an axisymmetric linear elastic layered model for the pavement 

with finite and infinite elements. The resulting nonlinear least squares problem is solved using the Gauss-Newton 

(GN) and the Levenberg–Marquardt (LM) methods. The gradients of deflections with respect to the material 

parameters used by the optimization methods are computed accurately and efficiently by the finite element code. 

The two methods are compared in terms of accuracy, robustness, and computational efficiency for pavement 

structures with different characteristics. 
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1  Introduction 

Backcalculation is a procedure used to estimate stiffness properties (resilient modulus) of asphalt pavement 

layers through non-destructive tests, as the Falling Weight Deflectometer (FWD) and the Benkelman beam 

(Scimemi et al., [1]; Kheradmandi and Modarres, [2]). This procedure is important to assess the quality of a 

pavement structure during its construction and/or to monitor its condition during its lifespan.  

In the FWD test, an impulse load due to the falling weight is imposed on the pavement surface. This load is 

transmitted to the pavement through a loading plate. Sensors and geophones located at several radial offsets are 

used to measure the surface deflections. The measurement made by each geophone represents the deflection of the 

pavement structure at a particular location. Peak deflection is measured by the geophone directly below the load 

application point and deflections are smaller for more distant geophones (Huang, [3]).  

Using the measured deflection basins, it is possible to determine the equivalent resilient moduli of the 

pavement layers through the backcalculation process. This process considers several theoretical assumptions 

including static loading, material continuity, layer homogeneity, and linear elastic behavior. 

Pavement deflections due to the applied loads depend on layer thicknesses and material stiffness properties 

(moduli and Poisson's ratios). However, it is generally accepted that the layers’ thicknesses are known and only 

the material properties need to be evaluated by backcalculation. Furthermore, it is assumed that the Poisson’s ratio 

presents a small influence on pavement response and its value can be defined based only the material type of each 

layer. Therefore, only the resilient modulus (i.e. modulus of elasticity) of each layer needs to be backcalculated. 
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Assuming that the pavement response is linear elastic, the deflections at the measurement points (geophones) 

due to the applied FWD load can be computed using the Finite Element Method (FEM) (Cook et al., [4]) or the 

Multilayered Elastic Theory (MLET) (Huang, [3]). Thus, the resilient modulus of the pavement layers can be 

evaluated by minimizing the difference between the simulated and the measured field deflections.  

This paper presents an efficient backcalculation approach based on the minimization of the sum of squared 

errors between the simulated and the measured deflections, obtained using an accurate and efficient FE model. 

The resulting nonlinear least squares problem is solved using the Gauss-Newton and the Levenberg–Marquardt 

methods. The gradients of deflections with respect to the material parameters used by the optimization methods 

are computed accurately and efficiently by the finite element code. The two methods are compared in terms of 

accuracy, robustness, and computational efficiency for pavement structures with different characteristics. 

2  Backcalculation of pavement properties 

The FWD load (F) is applied at a circular loading plate of radius (r). Considering that the resulting pressure 

applied to the pavement is uniform (𝑝 = 𝐹/𝜋𝑟2) and that the deflected region is much smaller than the pavement 

dimensions, the pavement responses can be evaluated using an axisymmetric model, which is much more efficient 

than a 3D one. Therefore, in this work the simulated deflections are computed using an axisymmetric FE model 

with a mesh composed of quadratic finite (Q8) and infinite (L6) elements (Silva et al., [5]), as shown in Figure 1. 

Numerical analyses are carried out using the CAP3D program (Holanda et al., [6]). The use of infinite elements 

allows to reduce the number of finite elements and improves the displacements accuracy (Silva et al., [5]). The 

mesh generation algorithm ensures that there is a node at the position of each geophone. 

 

Figure 1. Axisymmetric mesh used for backcalculation. 

 

In FEM, the nodal displacement vector (𝐮) is computed solving the linear system of equilibrium equations:  

𝐊 𝐮 = 𝐟 (1) 

where 𝐊 is the global stiffness matrix and 𝐟 is the external load vector. The global stiffness of the FE model is 

assembled by the classical direct stiffness approach summing up the element stiffness matrices (𝐊𝑒): 

𝐊𝑒 = ∫ 𝐁𝑇𝐂
𝑉𝑒

𝐁 𝑑𝑉,      𝐂 = 𝐸 𝐀(𝜐)  (2) 

where 𝑉𝑒 is the element volume, 𝐁 is the strain-displacement matrix, and 𝐂 is the elastic constitutive matrix for the 

axisymmetric model, 𝐸 is the modulus of elasticity, and 𝐀 is a matrix depending only on the Poisson’s ratio (𝜐) 

(Cook et al., [4]). 

This FEM model can be used to evaluate the deflections due to the FWD loading, provided that the pavement 

geometry and material properties are known. In this work, it is assumed that the thickness (h) and Poisson’s ratio 

(𝜐) of each layer is known and only the modulus of elasticity (E) needs to be backcalculated. Considering a 
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pavement with n layers and a FWD device with m geophones, the backcalculation problem can be written as: 

𝑚𝑖𝑛
𝐩 ∈ ℝ𝑛

𝑓(𝐩) =
1

2
∑(�̂�𝑖 − 𝑑𝑖)

2
𝑚

𝑖=1

=
1

2
∑ 𝑟𝑖

2

𝑚

𝑖=1

=
1

2
𝐫𝑇𝐫 ,    𝑛 ≤ 𝑚 (3) 

where �̂�𝑖 are the simulated deflections (FEM), 𝑑𝑖 are the measured deflections (FWD), 𝐫 is the residual vector and 

𝐩 = [𝐸1, ⋯ , 𝐸𝑛]𝑇 (4) 

is the vector of unknown parameters. Equation (3) corresponds to the classical Nonlinear Least Squares (NLS) 

problem (Madsen et al., [7]; Nocedal and Wright, [8]) which can be solved using different algorithms. The Gauss-

Newton and the Levenberg–Marquardt methods are applied in this work. 

2.1 Gauss-Newton 

Gauss-Newton method is obtained by the application of the Newton method to the NLS problem. The Newton 

method is based on a quadratic approximation of the function to be minimized: 

𝑓(𝐩𝑘+1) ≈ 𝑓(𝐩𝑘) + 𝐝𝑘
𝑇∇𝑓(𝐩𝑘) +

1

2
𝐝𝑘

𝑇𝐇(𝐩𝑘) 𝐝𝑘  (5) 

where k is the iteration number, 𝐝 is search direction, ∇𝑓 is the gradient, and 𝐇 = ∇2𝑓 is the Hessian matrix. The 

search direction (𝐝) at each iteration k is computed minimizing the approximate quadratic function: 

∇𝑓(𝐩𝑘+1) ≈ ∇𝑓(𝐩𝑘) + 𝐇(𝐩𝑘)𝐝𝑘 = 𝟎    ⟹     𝐝𝑘  = −(𝐇𝑘)−1 ∇𝑓𝑘 (6) 

Finally, the new estimate of the parameter (𝐩) vector can be obtained using: 

𝐩𝑘+1 = 𝐩𝑘 + 𝛼𝐝𝑘 (7) 

where 𝛼 is the step size along the search direction, obtained by a line search algorithm (Nocedal and Wright, [8]).  

Using exact gradient and Hessian, the Newton method presents local quadratic convergence. On the other 

hand, global convergence is not assured, but its robustness can be greatly improved by line searches. It can be 

shown that 𝐝𝑘 is a descent direction, provided that 𝐇𝑘 is positive definite (Nocedal and Wright, [8]). Thus, a simple 

backtracking algorithm is used here, where 𝛼 = 1 is adopted as the initial step size and the descent condition 

𝑓(𝐩𝑘 + 𝛼𝐝𝑘) < 𝑓(𝐩𝑘) (8) 

is tested. If this condition is satisfied, the step size is accepted, otherwise it is halved (𝛼 = 𝛼/2) and the test is 

repeated. This approach allows for a unit step size at the solution, which is a condition for quadratic convergence. 

For NLS problems described by Eq. (3), the gradient and Hessian matrix are given by 

∇𝑓 = 𝐫𝑇𝐉         and        𝐇 = 𝐉𝑇𝐉 + ∑ 𝑟𝑖

𝑚

𝑖=1

∇𝑟𝑖
2 (9) 

where 𝐉 is the Jacobian matrix: 

 𝐉 = [𝐽𝑖𝑗] = [
𝜕𝑟𝑖

𝜕𝑝𝑗

] = [
𝜕�̂�𝑖

𝜕𝑝𝑗

] (10) 

In several NLS problems, the second term of the Hessian matrix is small close to the solution, either because 

the residual is very small or the Jacobian is affine with respect to the model parameters (Nocedal and Wright, [8]).  

The GN method is obtained neglecting this term and considering 𝐇 ≈ 𝐉𝑇𝐉. Thus, the search direction at each 

iteration is computed by solving the linear system:  

(𝐉𝑘
𝑇𝐉𝑘) 𝐝𝑘  = − 𝐉𝑘

𝑇𝐫𝑘 (11) 

The iterations can be stopped when: 

|𝑓(𝐩𝑘)| < 𝜀1    or    |∇𝑓(𝐩𝑘)| < 𝜀2     (12) 

where 𝜀1 and 𝜀2are user defined tolerances. 

The convergence rate of GN method depends on how close 𝐉𝑇𝐉 approximates the true Hessian and can be 
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close to quadratic. On the other hand, failure can occur if the approximate Hessian is singular. Furthermore, when 

the initial point 𝐩0 is far from the solution, the quadratic approximation may be not accurate, which generates poor 

search directions, leading to slow improvement or divergence. 

2.2 Levenberg–Marquardt 

The Levenberg–Marquardt (LM) method (Madsen et al., [7]; Nocedal and Wright, [8]) was proposed as a 

more robust alternative to the GN method. This method is based on a modified form of Eq. (11): 

(𝐉𝑘
𝑇𝐉𝑘 + 𝜆𝐈) 𝐝𝑘 = − 𝐉𝑘

𝑇𝐫𝑘 (13) 

The damping parameter (𝜆 > 0) ensures that the coefficient matrix is positive definite, generating a descent search 

direction  𝐝𝑘. For large values of 𝜆,  𝐝𝑘 ≈ −∇𝑓 / 𝜆 is a short step in the steepest descent direction (−∇𝑓), which 

is a good option if the current iterates  𝐩𝑘 is far from the solution. Finally, if 𝜆 very small, then Eq. (12) reduces to 

Eq. (11), generating the same search direction then the GN method, which is good in the final iterations when  𝐩𝑘   

is close to the solution, and GN can present quadratic convergence. Since 𝜆 controls not only the search direction 

but also the step size, the LM algorithm is used without line search. 

The main idea of the LM method is to begin with a relatively large factor 𝜆. If  𝐝𝑘  provides a good decrease 

in 𝑓(𝐩𝑘 + 𝐝𝑘), the new step (𝐩𝑘+1 = 𝐩𝑘 + 𝐝𝑘) is accepted and 𝜆 is decreased. Otherwise, this step is not accepted 

and 𝜆 is increased. Several approaches have been proposed in the literature to update the damping factor. In this 

work, we adopt the approach proposed by Madsen et al. (2004), where the initial factor is given by: 

 𝜆0 = 𝜏 max( 𝐉0
𝑇𝐉0) (14) 

with 𝜏 > 0. After each iteration, the damping factor is updated according to the gain ratio: 

𝜌 =
𝑓(𝐩𝑘) − 𝑓(𝐩𝑘 + 𝐝𝑘)

𝐿(𝐩𝑘) − 𝐿(𝐩𝑘 + 𝐝𝑘)
     ⟹      𝜌 =

𝑓(𝐩𝑘) − 𝑓(𝐩𝑘 + 𝐝𝑘)

1

2
𝐝𝑘

𝑇
(𝜆𝐝𝑘 − 𝐉𝑘

𝑇𝐫𝑘)
    (15) 

where the denominator 𝐿 is the gain predicted by Eq. (5), which is guaranteed to be positive (Madsen et al., 2004). 

After that, the damping factor is updated according to 

{
𝜆 = 𝜆 max {

1

3
, 1 − (2𝜌 − 1)3} ;   𝜅 = 2, if 𝜌 > 0

𝜆 = 𝜆 𝜅;  𝜅 = 2 𝜅,                                                 if 𝜌 ≤ 0
 (16) 

The factor 𝜅 is initialized as 𝜅 = 2. According to this scheme, the damping factor 𝜆 varies smoothly along 

the iterations, being multiplied by 2 as 𝜌 approaches 0, kept almost constant for 0.25 ≤ 𝜌 ≤ 0.75, and being 

divided by 3 for 𝜌 ≥ 1. Furthermore, negative gain ratios lead to a quick increase of the damping factor. The 

convergence can be checked using Eq. (12). 

2.3 Sensitivity analysis 

The derivatives of nodal displacements required in Eq. (10) can be computed by differentiation of Eq. (11) 

with respect to parameter 𝑝𝑗: 

∂𝐊

∂𝑝𝑗

𝐮 + 𝐊
∂𝐮

∂𝑝𝑗

=
∂𝐟

∂𝑝𝑗

    ⟹     𝐊
∂𝐮

∂𝑝𝑗

= 𝐡𝑗 (17) 

where 𝐡𝑗  the pseudo-load vector is given by 

𝐡𝑗 =
∂𝐟

∂𝑝𝑗

−
∂𝐊

∂𝑝𝑗

𝐮 (18) 

It is important to note that ∂𝐟 / ∂𝑝𝑗 = 𝟎, since the external load vector does not depend on the material parameters. 

Furthermore, ∂𝐊 / ∂𝑝𝑗 can be exactly computed using finite differences, since 𝐊 depends linearly on the modulus 

of elasticity (E), as shown in Eq. (2).  

This procedure to exactly evaluate the displacement derivatives required by the NLS algorithms was 

implemented in CAP3D program. It requires the solution of an additional linear system for each model parameter. 
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Since the matrix 𝐊 was already factored to solve Eq. (1), the additional computational cost is small in comparison 

with a standard FE analysis. The column  𝑗 of the Jacobian matrix (𝐉) is assembled using the components of 

∂𝐮 / ∂𝑝𝑗 corresponding to vertical displacements of the nodes located at the geophones.  

3  Numerical examples 

The first example corresponds to a manufactured solution used to validate the formulation and 

implementation of the numerical methods described in the previous section. The geometric and stiffness 

parameters are presented in Table 1 and the corresponding deflection basin (Table 2) was determined by FEM 

using the same mesh adopted for backcalculation. It is worth mentioning that the radius and force used in these 

examples were 15 cm and 41 kN. This example is inspired in the three-layer pavement presented in Reddy et al. 

[9] and Scimemi et al. [1], but using the pavement data presented by Silva et al [5]. 

 

Table 1. Example 1 – Pavement structure. 

Layers Thickness (m) Modulus of elasticity (MPa) Poisson’s ratio 

Asphalt coating 0.10 3500 0.35 

Base 0.20 350 0.30 

Subgrade 7.50 100 0.40 

 

Table 2. Example 1 – Deflection basin. 

Distance (cm) 0 20 30 45 60 90 120 

Deflection 

(µm) 

471.75900 369.75346 307.95301 239.01464 190.47159 129.27643 94.61561 

 

The NLS algorithms were started from different points to assess their accuracy, efficiency, and robustness. 

The tolerances for convergence, defined according to Eq. (12), were 𝜀1 = 10-6 and 𝜀2= 10-8. The Levenberg-

Marquardt method was used with 𝜏 = 1. The obtained results, elapsed time, and number of iterations are presented 

in Table 3 (Gauss-Newton) and Table 4 (Levenberg–Marquardt). The machine used for backcalculation process 

has an Intel Core i5-8265U processor with 8 Gb RAM and 128 Gb SSD. 

 

Table 3. Example 1 – Results of Gauss-Newton method. 

Initial Modulus (MPa) Final Modulus (MPa) 
Time (s) #Iter 

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 

3500.0 350.00 100.00 3500.0 350.00 100.00 0.6304 - 

4000.0 300.00 75.000 3500.0 350.00 100.00 5.8945 4 

2500.0 500.00 50.000 3500.0 350.00 100.00 7.8890 5 

2000.0 200.00 150.00 3500.0 350.00 100.00 7.3730 5 

5000.0 500.00 200.00 3500.0 350.00 100.00 5.9150 4 

6000.0 1000.0 400.00 3500.0 350.00 100.00 8.4930 6 

 

Table 4. Example 1 – Results of Levenberg–Marquardt method. 

Initial Modulus (MPa) Final Modulus (MPa) 
Time (s) #Iter 

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 

3500.0 350.00 100.00 3500.0 350.00 100.00 0.75230 - 

4000.0 300.00 75.000 3500.0 350.00 100.00 21.342 18 

2500.0 500.00 50.000 3500.0 350.00 100.00 25.306 20 

2000.0 200.00 150.00 3499.9 350.01 100.00 20.767 16 

5000.0 500.00 200.00 3500.2 349.98 100.00 16.892 14 

6000.0 1000.0 400.00 3500.3 349.98 100.00 24.565 23 

 

As expected, the number of iterations decreases when the initial point is closer to the solution and no iterations 

are carried out when the exact solution is used as the starting point. The results show that both algorithms are 

accurate and robust, finding the correct solution from all starting points considered in this work. However, with 

respect to computational efficiency, the Gauss-Newton method was superior, requiring fewer iterations for all 
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starting points. 

The second example corresponds to the application of the NLS algorithms to the backcalculation of three 

different asphalt pavements encountered in Brazilian roads: 

• Pavement 2: well sized structure with CAP 50/70 asphalt coating (E = 3243 MPa, h = 5 cm, ν = 0.35), 

simple graded gravel (E = 381 MPa, h = 15 cm, ν = 0.3) in the base, a clayey soil (E = 250 MPa, h = 

15 cm, ν = 0.3) in the sub-base, and a silty soil (E = 189 MPa, ν = 0.40) in the subgrade. 

• Pavement 3: semi-rigid pavement, with graded gravel treated with cement used (E = 4500 MPa) in 

the base, overcoming the stiffness of the upper layer. 

• Pavement 4: defective structure, with a poorly compaction of the sub-base, reducing its stiffness        

(E = 90 MPa) and making it smaller than the stiffness of the subgrade. 

These pavements are more complex than the previous one since they present four layers. As in the previous 

example, the exact deflection basin was determined by FEM using the same mesh adopted for backcalculation. 

The resulting deflection basins for the three pavements are presented in Table 5. The radius and force used in this 

example were 15 cm and 41 kN. The same algorithm parameters of the previous example were adopted here.  

The same starting point (𝐸1 = 2000 MPa, 𝐸2 = 200 MPa, 𝐸3 = 200 MPa, 𝐸4 = 150 MPa) was used for all 

pavements. The obtained results, elapsed time, and number of iterations are presented in Table 6 (Gauss-Newton) 

and Table 7 (Levenberg–Marquardt). 

 

Table 5. Example 2 – Deflection basins. 

Distance (cm) 0 20 30 45 60 90 120 

Deflection (µm) - Pav. 2 441.445 268.638 191.629 133.363 101.277 66.7199 49.0573 

Deflection (µm) - Pav. 3 223.192 182.327 159.393 129.566 105.198 71.2286 51.2071 

Deflection (µm) - Pav. 4 541.040 341.055 241.568 156.678 109.807 66.0115 47.7723 

 

Table 6. Example 2 – Results of Gauss-Newton method. 

Layer 
Pavement 2 Pavement 3 Pavement 4 

E (MPa) #Iter (time) E (MPa) #Iter (time) E (MPa) #Iter (time) 

Asphalt coating (5 cm) 3243.0 

4 (5.53 s) 

3243.0 

8 (9.91 s) 

3243.0 

5 (8.40 s) 
Base (15 cm) 381.00 4500.0 381.00 

Sub-base (15 cm) 250.00 250.00 90.000 

Subgrade (-) 189.00 189.00 189.00 

 

Table 7. Example 2 – Results of Levenberg–Marquardt method. 

Layer 
Pavement 2 Pavement 3 Pavement 4 

E (MPa) #Iter (time) E (MPa) #Iter (time) E (MPa) #Iter (time) 

Asphalt coating (5 cm) 3243.0 

19 (24.5 s) 

3242.7 

27 (33.3 s) 

3242.3 

19 (30.8 s) 
Base (15 cm) 381.00 4500.1 381.03 

Sub-base (15 cm) 250.00 250.01 89.996 

Subgrade (-) 189.00 189.00 189.00 

 

It should be noted that both algorithms obtained the correct results for all pavements, including Pavement 3 

with a stiffer base and Pavement 4 with a poorly compacted sub-base. Therefore, they can be used to assess the 

quality of a pavement structure and detect construction problems through the nondestructive FWD tests. However, 

once again, the Gauss-Newton method was superior, requiring fewer iterations for the three different pavement 

structures considered in this work. 

4  Conclusions 

This paper presented a backcalculation procedure based on the use of nonlinear least squares (NLS) 

algorithms to find the elasticity moduli of the pavement layers that best fit the deflections measured in field tests. 

The numerical model is based on the Finite Element Method and consists of a mixed mesh of finite and infinite 

quadratic elements. The NLS problem is solved using the Gauss-Newton method with line search and the 

Levenberg–Marquardt algorithm. The NLS problem is solved efficiently, using the exact derivatives of the finite 

element deflections to compute the Jacobian matrix. 
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The effectiveness of the proposed backcalculation procedure was assessed using the method of manufactured 

solutions, where the measured deflections are obtained numerically, and the number and locations of the deflection 

measures are the same as used in standard FWD equipment. The results for a pavement with three layers show that 

both alternatives (GN and LM) are capable to find the correct layer properties for many initial points with varying 

distances from the problem solution.  

The same methodology is applied again in a set of 3 pavements typically observed in Brazillian roads. These 

pavements have four layers, and the material properties are set to reproduce a representative flexible pavement 

well-designed, a semi-rigid pavement, and a defective pavement structure. In all the cases, both algorithms 

predicted the correct material properties. Therefore, both algorithms can be used to perform the backcalculation 

of pavement properties, which is an important tool to assess the quality of a pavement structure and detect 

construction problems through nondestructive FWD tests. 

The GN method outperformed the LM method in terms of number of iterations and execution time for all 

examples considered in this work. The excellent performance of GN shows that the approximation of the Hessian 

matrix did not affect its performance in the problems discussed here. However, further studies need to be carried 

out to assess its performance for actual FWD data where the fitting errors are not necessarily close to zero. With 

respect to LM, its well known that its convergence rate depend on the adopted damping update scheme. Since 

there are several variants presented in the literature, it is important to perform a comprehensive assessment of 

behavior of these variants for the backcalculation of pavement properties. Moreover, it is important to study the 

presence of local minima. Furthermore, box constraints can be considered to improve the robustness of the 

backcalculation procedure. 

The effectiveness of the proposed backcalculation procedure will be further investigated considering different 

starting points and deflection basins with varying noise to reproduce errors observed in actual FWD tests. Finally, 

we also intend to expand this study to include examples using actual field data. 
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