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Abstract. In this paper, the isogeometric boundary element method (IGABEM) is used for determining tractions
in contact problems. We simulate contact between a fretting pad and a metallic specimen, a usual experimental
configuration. The results are compared with standard boundary elements method and analytical results. The
analysis consists of evaluating tractions during one loading cycle, which includes normal and shear loads. After,
the results are validated using analytical formulae. Lastly, a performance comparison between each method is
presented.
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1 Introduction

Fretting fatigue by Waterhouse and Lindley [1] is a failure process observed in contact surfaces under cyclical
loading. It is regarded as the main cause of failure in several mechanical systems (i.e., dovetail joints, wire cables,
threaded pipe connections, bolted and riveted joints) and can represent a considerable cost in terms of a country’s
GNP by Reed et al. [2]. Moreover, high strength aluminium and titanium are often the material of choice in
components susceptible to fretting fatigue. They are costly and difficult to machine. Therefore, cost-efficient
methods for the life estimation of components are paramount.

Although finite elements are the most used numerical method for the analysis of fretting problems, Boundary
Element based approaches have some interesting features that should be taken into account. An analysis using
BEM requires less cost associated with the discretization of the problem. Moreover, BEM meshes can be extremely
easy to generate, specially when using an Isogeometrical approach.

Isogeometric analysis (IGA) [3, 4] uses the same functions for modelling the geometry and for approximating
the unknown fields in numerical analysis. Although it is possible to develop isogeometric methods based on T-
Splines [5–7] or others, the most common is based on Non-Uniform Rational B-Splines (NURBS). They are a
standard for curve and surface representation in Computer-Aided Design (CAD) systems and have features such
as representing exactly all conic sections and being refined by knot insertion.

In this work, the IGABEM is used for analysis of two-dimensional elastic contact problems under a fretting
fatigue loading condition. Normal and shear stresses at contact region are compared to analytical solutions in
different moments of the cyclic load. Very accurate results are obtained. A comparison made with the conventional
BEM [8], using Lagrangian polynomials as basis function, has shown that the IGABEM is more accurate if we
consider the same number of degrees of freedom.

1.1 IGABEM

The main difference between IGABEM and the conventional BEM is that the former uses Non-uniform
rational B-splines (NURBS) as basis functions to approximate the geometry and unknown boundary fields. In
IGABEM, the definition of element is not as straightforward as in the conventional formulation. Due to that, after
discretizing the boundary, the physical domain is mapped to a parameter element [ξi, ξj ] which is the interval
between two consecutive unique knots.

Interpolating geometry and unknown variables using NURBS, we have:
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Figure 1. Bodies separated by an initial gap (left) and establishment of a contact condition (right).

xj(ξ) =

n∑
1

Ri,p(ξ)xc, (1)

uj(ξ) =

n∑
1

Ri,p(ξ)uc, (2)

tj(ξ) =

n∑
1

Ri,p(ξ)tc, (3)

where Ri,p are defined as

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1 Nj,p(ξ)wj

. (4)

Ni,p(ξ) is the ith B-spline basis functions of degree p [9], xc is the coordinate of a control point and uc and tc are
displacements and tractions coefficients, respectively. Each one of the previous coefficients are associated with a
control point. Attention is needed because those values do not have a physical meaning, as the control point might
lie outside the boundary. In order to recover displacements and tractions associated with collocation points over
the boundary, we can do the following:

u = Euc (5)
t = Etc (6)

where E is a transformation matrix defined in [10, 11].

2 Contact formulation

A classical depiction of a contact process is given in Fig. 1. It encompasses two basic stages: 1) the evaluation
of the normal gap, g, between the contacting surfaces; and 2) the calculation of the contact pressure, λn, whenever
the normal gap is closed.

This relationship is often denoted as the Kuhn-Karush-Tucker condition,

g ≥ 0,

λn ≤ 0,

λng = 0. (7)

Moreover, the contact conditions can be thought as constraints that must be satisfied for each node-pair within the
contact zone. Therefore, they can be defined into three states:

• Separated is when both nodes are within a positive and non-zero distance from each other.
• Stick bodies are in contact while not displaying tangential motion.
• Slip bodies are in contact and without restriction in the tangential direction.
Table 1 lists the relationships that represent the three modes of contact previously stated, where tn and tt are

the normal and tangential tractions, and un and ut are the normal and tangential displacements (expressed in local
coordinates), respectively. It is important to remark that state of the node-pairs is continuously updated within the
iterative procedure.
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Table 1. Set of traction/displacement relations for the contact conditions.

Separated Stick Slip

tat − tbt = 0 tat − tbt = 0 tat − tbt = 0

tan − tbn = 0 tan − tbn = 0 tan − tbn = 0

tat = 0 ua
t − ub

t = 0 tat ± µtan = 0

tan = 0 ua
n − ub

n = gab ua
n − ub

n = gab

The proposed formulation addresses frictional contact in a two-dimensional setting. The solids are regarded
as homogeneous isotropic linear elastic bodies. For instance, let us consider the bodies A and B so that their
deformations can be described by two coupled integral equations, one for each body, as follows,

cAiju
A
j +

NA∑
n=1

HA
iju

A
j =

NA∑
n=1

GA
ijt

A
j (8)

cBiju
B
j +

NB∑
n=1

HB
iju

B
j =

NB∑
n=1

GB
ijt

B
j (9)

where NA and NB are the number of collocation points of bodies A and B, respectively. Therefore, two sets of
linear equations are obtained and their matrix form, can be written such that,

[H]
γ {u}γ = [G]

γ {t}γ , γ = A,B (10)

As noted by [12, 13], for linear problems, once this system of equations has been solved, the final solution
for displacements and tractions everywhere on the boundaries can be obtained. This is not the case for this study,
as we are dealing with a non-linear problem. This non-linearity comes from the fact that the contact region is not
known a priori and it must be determined as part of the solution. In order to overcome this, the same approach
used in [8, 14, 15] is reproduced here. It consists of an iterative method known as generalized Newton’s method.

3 Numerical analysis

This section presents a numerical analysis of the Cattaneo-Mindlin problem to assess the accuracy of the
proposed IGABEM formulation. The accuracy is assessed via comparison with analytical solutions [16–19] and a
comparison to an conventional BEM using continuous quadratic elements.

3.1 Cattaneo-Mindlin problem

The Cattaneo-Mindlin problem is shown in Fig. 2. It consists of two elastically-similar bodies in frictional
contact. The body is loaded with a normal force and a tangential force while restricted at its central node in the x−
direction. The body 2 is fully restrained on its bottom.

Firstly, a normal load is applied. Then, this load is maintained constant while a tangential load is cyclically
applied. A depiction of the loading scheme is shown in Fig. 3.
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Figure 2. Cattaneo-Mindlin - problem configuration.

As the two bodies have similar geometries, they are discretized with the same mesh. In order to compare
results from conventional BEM and IGABEM, the mesh is discretized in a way that both have the same number of
node-pairs in the contact zone, i.e., NPc = 61.
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Figure 3. Cattaneo-Mindlin - loading scheme containing five steps (A-E).

Point A is when the normal load P reaches its final value, whereas point B is the moment when the maximum
tangential load is applied. Afterwards, tangential load starts to decrease, passing through zero at point C and
decreasing further. Point D is when the tangential load is in its minimum value and, finally, point E is when the
tangential load reaches zero again. Geometric and material properties can be seen in Table 2.

Table 2. Cattaneo-Mindlin - Dimensions and material properties.

Property Symbol Value

Radius R 70 mm

Length w 6.5 mm

Young’s Modulus E 73.4 GPa

Poisson’s ratio ν 0.33

Pressure P 100 N/mm

Friction coefficient f 0.3

In this problem, both BEM and IGABEM have a finer mesh in segments that may be in contact.
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(a) Load step B.

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

x/a (mm)

ρ
/p

0
(M

P
a
)

tAn tAt tBEM
n tBEM

t tIGA
n tIGA

t

(b) Load step C.
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(c) Load step D.

−1 −0.5 0 0.5 1

0

0.5

1

x/a (mm)

ρ
/p

0
(M

P
a
)

tAn tAt tBEM
n tBEM

t tIGA
n tIGA

t

(d) Load step E.

Figure 4. Cattaneo-Mindlin - normal (tn) and tangential (tt) tractions comparison of IGABEM, BEM and analyti-
cal results at four load steps (B-E).

3.2 Tractions

Fig’s. 4a- 4d compare the tractions of conventional BEM and IGABEM with the analytical solution for four
out of five loading steps, B to E. Both normal and tangential tractions for BEM (tBEM

n and tBEM
t ), IGABEM

(tIGA
n and tIGA

t ) and analytical solutions (tAn and tAt ) are shown.
The vertical dimension of the two bodies is large enough (2.5w) to provide no tangential load in the first step,

as demanded by the analytical solution. So, tt ≈ 0 in the first step.

3.3 Displacements

Displacements fields in normal and tangential directions were measured and their results are presented in this
section. Figures (5a-5d) compare the displacements for BEM and IGABEM for load steps 2 to 5.

Only the displacements of node-pairs within the contact zone are shown. Although there is no analytical
solution to compare with, we can see that there is a good agreement between the two methods.
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(a) Step 2.
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(b) Step 3.
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(c) Step 4.

−1 −0.5 0 0.5 1

−4

−2

0

·10−2

x/a(mm)

u
(m

m
)

uBEM
n uBEM

t uIGA
n uIGA

t

(d) Step 5.

Figure 5. Cattaneo-Mindlin - IGABEM and BEM normal (un) and tangential (ut) displacements fields over contact
surface for load steps (B-E).

It can be seen that the results are in good agreement. The maximum error is 4.104 % for shear tractions
localized in the frontier of the slip-stick region. In all other points, all curves are very near. Normal tractions
remain the same during the load steps while tangential tractions change.

4 Conclusions

This paper presented an extension of the IGABEM to the analysis of contact problems under cyclic loads.
Details of the formulation are shown and its accuracy is assessed throughout comparison with the isoparametric
quadratic continuous boundary elements and analytical solutions showing good agreement. One of main advan-
tages of the use of IGABEM in contact problems is that it can exactly represent the contact surface with few control
points. Thus, we can have accurate solutions with few degrees of freedom.
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