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Chapecó, 89809-900, Santa Catarina, Brazil
thiago.carniel@unochapeco.edu.br

Abstract. Fluid flow effects on the microstructure of soft biological tissues are of fundamental importance in
understanding mechanobiological processes, such as in mechanotransduction. Since these tissues are highly het-
erogeneous and have a large microstructural hierarchy, investigations of macroscopic behavior by incorporating
microstructural effects can be performed using multiscale techniques. This work aims to bring additional discus-
sion related to the micromechanics of fibrous biological tissues such as tendons. For this purpose, technical aspects
involving the first-order multiscale formulation developed by the authors are discussed, presenting advantages and
limitations of this type of model. Some results related to a multiscale framework that considers hydro-mechanical
coupling are presented and discussed, aiming point out some features of the formulation.
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1 Introduction

While in healthy conditions tendons play the functional role of providing mechanical continuity between
bones and muscles, their malfunction is capable of seriously compromising motor skills and quality of life. Stud-
ies in the literature about their mechanical modeling are mostly related to macroscopic biomechanical function,
leading to phenomenological constitutive expressions whose complexity is chosen according to the specific ap-
plication. Less (but increasingly) frequently, one finds models whose focus is on the structural complexity of the
tissue itself, with the aim of understanding the mechanical role in tissue homeostasis and in triggering pathological
processes.

In the latter case, a close look at the tissue will show a highly hierarchical multi-scale complex structure
comprising subtendons, fascicles, cells, fibrils, collagen molecules, and other components. As a consequence, a
simple macro-scale uniaxial stress state branches out into a complex heterogeneous micro-scale stress field.

Being cells the protagonist of mechano-transduction activity, the fascicle scale (cells and fibers in a geomet-
ric arrangement), is of particular interest [1–3]. At such a scale, the intrinsic dissipative properties of the solid
phase as well as the fluid flow process play an important role. Poromechanical models, largely used in biological
macroscopic systems like intervertebral disks and cartilaginous joints, re-emerge as a valid modeling framework
for tendons at such scale where multiscale/homogenization theories bring suitable alternatives for analysis. In
recent years, some authors have addressed appropriate homogenization frameworks for multiphase models [4–6],
but less information is recovered when large deformations take place.

In this context, a proposition of finite-strain multiscale framework considering hydro-mechanical coupling
under large deformations is ongoing in the first author’s PhD thesis. This formulation is based on the axioms of
the Multiscale Virtual Power Method proposed in Blanco et al. [7]. Since this work is grounded in a variational
approach, the multiscale boundary conditions are established through the so-called minimally restricted spaces,
which constraint the displacement and pore pressure fields. This paper aims to contribute to the investigation and
discussion of the proposed multiscale poromechanical model. In this case, further numerical results are discussed in
order to pursue the main objective of finding answers to biomechanical/clinical questions in such tissues mechanics.
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2 Computational modeling

2.1 Poromechanics formulation

Poromechanical formulations model a porous medium consisting of a fluid flowing through a deformable
porous solid, but in a homogenized fashion at the macro-scale level. Thus, such a class of models does not
consider an explicit separation between the solid and the fluid phase.

Considering poromechanical models applied to soft tissues, some fundamental assumptions are generally
considered. At first, the solid skeleton is considered to be completely saturated with only one fluid phase. Further-
more, the fluid and the solid material are considered to be intrinsically incompressible, although the solid skeleton
is considered to be compressible, allowing fluid flow during deformation. Regarding the stress field of the porous
medium, the total Cauchy stress tensor is defined by a sum of a fluid contribution, which depends only on the pore
pressure, and a solid contribution, which in turn usually depends only on the deformation of the solid skeleton.

The variational form (weak form) of the governing equation of the macro-scale porous domain [8, 9], in the
absence of inertial and body forces, can be written in the referential configuration by,

δW s =

∫
ΩX

P : δF dΩX −
∫

∂ΩX|t

t̄X · δu d∂ΩX = 0, ∀δu ∈ Vu and

δW f =

∫
ΩX

J̇ δp dΩX −
∫
ΩX

wX ·∇Xδp dΩX +

∫
∂ΩX|q

q̄X δp d∂ΩX = 0, ∀δp ∈ Vp,

(1)

in which the total first Piola-Kirchhoff stress tensor is given by P = J (σs − pI)F−T, where σs is the solid
skeleton Cauchy stress and p is the pore pressure. In this line, δF=∇Xδu is the first variation of the deformation
gradient F. The scalar J = det (F) is the volumetric jacobian, and its rate is given by J̇ = tr

(
∇Xv

sF−1
)
J ,

where the operator tr (·) is the trace operator. The vector wX = JF−1w represents the referential relative velocity
and the operator ∇X (·) is the referential gradient operator. The vector t̄X and the scalar q̄X are the referential
external surface traction and the referential external surface flux, respectively. Moreover, Vu and Vp represent
the macro-scale referential admissible spaces for the variations δu and δp, respectively. The poromechanical
formulation and coupled solution methods used in this work are extensively presented in Klahr et al. [10].

2.2 Computational homogenization poromechanical model

Considering the poromechanical modeling, the primary modeling variables are the displacement and the pore
pressure. Therefore, it is necessary to define the insertion operation for these variables, which in computational
homogenization refers to the operation of transferring the quantities from the macro scale to the micro scale.

The micro-scale displacement field uµ (Y, t) can be extended by,

uµ (Y, t) = u (X, t) +∇Xu (X, t)Y + ũµ (Y, t) , (2)

where u (X, t) and ∇Xu (X, t) are the macro-scale displacement and its referential gradient, respectively, Y is the
micro-scale referential position and ũµ is the micro-scale displacement fluctuation field. Similarly, the micro-scale
pore pressure field pµ (Y, t) is expanded as,

pµ (Y, t) = p (X, t) +∇Xp (X, t) ·Y + p̃µ (Y, t) , (3)

where p (X, t) and ∇Xp (X, t) are the macro-scale pore pressure and its referential gradient, respectively, and p̃µ
is the micro-scale pore pressure fluctuation field.

Defining the concept of volumetric homogenization in the referential setting, which relates the macro-scale
quantities to the micro-scale fields, we define the homogenization operator as

⟨(·)⟩ = 1

Vµ

∫
ΩY

(·) dΩY, (4)

where Vµ is the referential volume of the RVE.
This multiscale poromechanical assumes two constraints. Firstly, it is proposed that the homogenization of

the micro-scale fields of primaty variables uµ (Y, t) and pµ (Y, t) are related to their macro-scale fields, i.e.:

⟨uµ (Y, t)⟩ = u (X, t) and ⟨pµ (Y, t)⟩ = p (X, t) , (5)
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Secondly, it is assumed that the volumetric homogenization of the micro-scale gradient fields must be equal
to the corresponding macro-scale gradients,

⟨∇Yuµ (Y, t)⟩ = ∇Xu (X, t) and ⟨∇Ypµ (Y, t)⟩ = ∇Xp (X, t) . (6)

The energetic consistency between micro and macro-scales was established through the so-called Hill-Mandel
Principle of Macro-homogeneity [11, 12]. In this work, we follow the proposition established in [7], where the
Hill-Mandel Principle is rewritten in a variational statement. In this case, the Principle of Multiscale Virtual
Power proposes that the total macro-scale virtual power must be equal to the total micro-scale virtual power at the
corresponding RVE subjected to all kinematically admissible boundary conditions, that is,

P total
M

(
δḞ, δp,∇Xδp

)
= P total

µ

(
δ ˙̃uµ, δp̃µ

)
. (7)

Based on the poromechanical formulation presented in Eq. (1), the total macro-scale virtual power is defined
as

P total
M

(
δḞ, δp,∇Xδp

)
= P : δḞ+ J̇ δp−wX ·∇Xδp ∀

(
δḞ, δp,∇Xδp

)
(8)

and its micro-scale counterpart is written as

P total
µ

(
δ ˙̃uµ, δp̃µ

)
=

〈
Pµ : δḞµ + J̇µ δpµ −wY ·∇Yδpµ

〉
∀
(
δ ˙̃uµ, δp̃µ

)
∈ Vũµ

× Vp̃µ
, (9)

where V(·) is the kinematically admissible space referring to variation of the variable (·) in the referential configu-
ration. From the aforementioned principle, the equilibrium (mechanical balance) and mass conservation equations
satisfied at the microscale can be derived, providing the following variational expressions on the RVE domain:∫

ΩY

Pµ : ∇Yδ ˙̃uµ dΩY = 0, ∀δ ˙̃uµ ∈ Vũµ
, and (10)

∫
ΩY

[
δp̃µJ̇µ −∇Yδp̃µ ·wY

]
dΩY = 0, ∀δp̃µ ∈ Vp̃µ

. (11)

In addition to the equilibrium equations, the homogenizations of the dual variables are also achieved through
(7). The finite element method was then used to discretize both equations and to elaborate the numerical test
described in the next section.

3 Numerical Examples

In order to extend the numerical investigations on the multiscale formulation, direct numerical simulations
(DNS) were proposed and the solutions were compared with those obtained in the RVE.

Considering that this work is included in a soft biological tissues research, the geometrical and constitutive
parameters are closely related to those. Considering a fibrous morphology, this study uses a model composed by
two material phases: fibers and matrix.

The multiscale analysis are guided by the kinematic and pressures quantities retrieved from DNS. The multi-
scale boundary conditions are based on the Minimal Axial Linear Model (MALM) [2] for the displacement field
and minimally constrained model for pressure field.

Considering an isotropic Neo-Hookean hyperelastic model to represent the solid skeleton behavior and the
Darcy law with a isotropic constant permeability, the principal parameters used in the analysis are summarized
in Table 1. Figure 1 presents the numerical model used in the DNS and multiscale analysis. In this case, three
different sample location are retrieved from DNS and the results verified with the RVE. The DNS is based on a
displacement-guided monotonic uniaxial test with a drained fluid condition. In this case, the displacement was
prescribed in the axial direction of the fibers and it was controlled at 1 µm/s up to 1 µm in both top and bottom
surfaces. To consider a drained case, free fluid flow (zero pore pressure boundary condition) was set only at the
lateral external surfaces, allowing fluid mass exchanging with the external surroundings.

Aiming to study the influence of multiscale boundary conditions on the RVE fields, Fig. 2, Fig. 3 and Fig.
4 present some micro-scale fields results for three different sample location on DNS, central, lateral and diagonal,
respectively. All results are depicted at the 5% instant of the macro-scale axial strain.

One can see that the displacement field and strain pattern can be adequately recovered from this multiscale
analysis. This is consistent with the conclusions pointed out in the work Carniel et al. [2], which indicates that the
MALM seems to be suitable for the case of fibrous RVE.
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However, when the fields related to the fluid problem are observed, although the pore pressure field seems to
have a reasonable good representation, the results of relative velocities show that the minimally constraint condition
is inadequate to represent the DNS drained case.

This issue is directly related to boundary condition of the multiscale model. It can easily be seen that in the
DNS sample there is a non-null net fluid flux, due to the drained condition. On the other hand, the minimally
model on the RVE imposes an undrained condition on the RVE boundaries, leading to a null net fluid flux, being
inconsistent with volume changes.

Despite the discussion of the size of the RVE not satisfying the separation of scales in transient problems,
this results point out that the classical decomposition used in the microscopic fields, combined with the minimally
constraint models, seems to be insufficient to represent the fluid velocities in a drained case. Therefore, it becomes
necessary to propose alternatives to represent the fluid fields, which is already a new work in progress.

Direct Numerical Simulation versus RVE

DNS mesh

RVE mesh

Samples

• Diagonal
• Central
• Lateral

Load Cases

• Drained (p = 0) BC

a)

c)

b)

d)

Figure 1. Representation of the geometry and the finite element mesh of the numerical specimen and RVE used in
the analysis. a) Mesh of the specimen used in the DNS. b) Model with the finite element mesh used in the DNS.
b) Sketch emphasizing the samples localization. c) Micro-scale model with the finite element model (Sample and
RVE). d) 2D view showing the boundary conditions of the DNS in the drained case.

Table 1. Principal geometrical and constitutive parameters used in analyses.

Geometrical Constitutive

Parameter Value Units Parameter Value Units

DNS size 90.0 µm Fiber Lamé’s first parameter 10.0 MPa

RVE size 10.0 µm Fiber Lamé’s second parameter 15.0 MPa

Fiber diameter 5.0 µm Fiber Darcy’s permeability 1 · 10−4 mm4
/Ns

Fiber volume fraction ∼ 20 % Matrix Lamé’s first parameter 1.0 MPa

Matrix Lamé’s second parameter 1.5 MPa

Matrix Darcy’s permeability 2 · 10−4 mm4
/Ns
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Figure 2. Comparative results RVE/DNS of the central sample at 5% of axial macroscopic strain. a) Amplitude of
the displacement field |u|. b) Pore pressure field. c) Amplitude of the referential relative velocity field |wY|. The
3D contour plot and the 2D vector plot at the fiber transverse surface.

4 Conclusions

This paper aimed to discuss important points of the multiscale poromechanical theory for large deformations.
Although good results were obtained for the displacement and pore pressure fields, the cases presented show that
the model fails to represent the relative fluid velocity patterns due to restrictions imposed by the minimal boundary
conditions. Even knowing that the chosen RVE does not satisfy the principle of scale separation for transient
problems, the aspects of the boundary conditions applied to the micro-scale are discussed, mainly given fluid flux
constraints applied on the boundaries of the RVE. For each of the chosen sample’s location (central, lateral and
diagonal), it is observed that the displacement and pressure fields consistently approximate the results obtained via
DNS. However, when the pressure gradients, i.e., relative velocity fields are taken, it is seen that the fluid paths
are distinct, indicating that the applied boundary conditions do not allow for a liquid fluid flow into the RVE (i.e.,
micro-scale shrinkage or swelling).
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Figure 3. Comparative results RVE/DNS of the lateral sample at 5% of axial macroscopic strain. a) Amplitude of
the displacement field |u|. b) Pore pressure field. c) Amplitude of the referential relative velocity field |wY|. The
3D contour plot and the 2D vector plot at the fiber transverse surface.
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